aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/Cryptodome/Math/_IntegerNative.py
diff options
context:
space:
mode:
Diffstat (limited to 'frozen_deps/Cryptodome/Math/_IntegerNative.py')
-rw-r--r--frozen_deps/Cryptodome/Math/_IntegerNative.py380
1 files changed, 380 insertions, 0 deletions
diff --git a/frozen_deps/Cryptodome/Math/_IntegerNative.py b/frozen_deps/Cryptodome/Math/_IntegerNative.py
new file mode 100644
index 0000000..896107f
--- /dev/null
+++ b/frozen_deps/Cryptodome/Math/_IntegerNative.py
@@ -0,0 +1,380 @@
+# ===================================================================
+#
+# Copyright (c) 2014, Legrandin <[email protected]>
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions
+# are met:
+#
+# 1. Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+# 2. Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in
+# the documentation and/or other materials provided with the
+# distribution.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+# POSSIBILITY OF SUCH DAMAGE.
+# ===================================================================
+
+from ._IntegerBase import IntegerBase
+
+from Cryptodome.Util.number import long_to_bytes, bytes_to_long
+
+
+class IntegerNative(IntegerBase):
+ """A class to model a natural integer (including zero)"""
+
+ def __init__(self, value):
+ if isinstance(value, float):
+ raise ValueError("A floating point type is not a natural number")
+ try:
+ self._value = value._value
+ except AttributeError:
+ self._value = value
+
+ # Conversions
+ def __int__(self):
+ return self._value
+
+ def __str__(self):
+ return str(int(self))
+
+ def __repr__(self):
+ return "Integer(%s)" % str(self)
+
+ # Only Python 2.x
+ def __hex__(self):
+ return hex(self._value)
+
+ # Only Python 3.x
+ def __index__(self):
+ return int(self._value)
+
+ def to_bytes(self, block_size=0):
+ if self._value < 0:
+ raise ValueError("Conversion only valid for non-negative numbers")
+ result = long_to_bytes(self._value, block_size)
+ if len(result) > block_size > 0:
+ raise ValueError("Value too large to encode")
+ return result
+
+ @classmethod
+ def from_bytes(cls, byte_string):
+ return cls(bytes_to_long(byte_string))
+
+ # Relations
+ def __eq__(self, term):
+ if term is None:
+ return False
+ return self._value == int(term)
+
+ def __ne__(self, term):
+ return not self.__eq__(term)
+
+ def __lt__(self, term):
+ return self._value < int(term)
+
+ def __le__(self, term):
+ return self.__lt__(term) or self.__eq__(term)
+
+ def __gt__(self, term):
+ return not self.__le__(term)
+
+ def __ge__(self, term):
+ return not self.__lt__(term)
+
+ def __nonzero__(self):
+ return self._value != 0
+ __bool__ = __nonzero__
+
+ def is_negative(self):
+ return self._value < 0
+
+ # Arithmetic operations
+ def __add__(self, term):
+ try:
+ return self.__class__(self._value + int(term))
+ except (ValueError, AttributeError, TypeError):
+ return NotImplemented
+
+ def __sub__(self, term):
+ try:
+ return self.__class__(self._value - int(term))
+ except (ValueError, AttributeError, TypeError):
+ return NotImplemented
+
+ def __mul__(self, factor):
+ try:
+ return self.__class__(self._value * int(factor))
+ except (ValueError, AttributeError, TypeError):
+ return NotImplemented
+
+ def __floordiv__(self, divisor):
+ return self.__class__(self._value // int(divisor))
+
+ def __mod__(self, divisor):
+ divisor_value = int(divisor)
+ if divisor_value < 0:
+ raise ValueError("Modulus must be positive")
+ return self.__class__(self._value % divisor_value)
+
+ def inplace_pow(self, exponent, modulus=None):
+ exp_value = int(exponent)
+ if exp_value < 0:
+ raise ValueError("Exponent must not be negative")
+
+ if modulus is not None:
+ mod_value = int(modulus)
+ if mod_value < 0:
+ raise ValueError("Modulus must be positive")
+ if mod_value == 0:
+ raise ZeroDivisionError("Modulus cannot be zero")
+ else:
+ mod_value = None
+ self._value = pow(self._value, exp_value, mod_value)
+ return self
+
+ def __pow__(self, exponent, modulus=None):
+ result = self.__class__(self)
+ return result.inplace_pow(exponent, modulus)
+
+ def __abs__(self):
+ return abs(self._value)
+
+ def sqrt(self, modulus=None):
+
+ value = self._value
+ if modulus is None:
+ if value < 0:
+ raise ValueError("Square root of negative value")
+ # http://stackoverflow.com/questions/15390807/integer-square-root-in-python
+
+ x = value
+ y = (x + 1) // 2
+ while y < x:
+ x = y
+ y = (x + value // x) // 2
+ result = x
+ else:
+ if modulus <= 0:
+ raise ValueError("Modulus must be positive")
+ result = self._tonelli_shanks(self % modulus, modulus)
+
+ return self.__class__(result)
+
+ def __iadd__(self, term):
+ self._value += int(term)
+ return self
+
+ def __isub__(self, term):
+ self._value -= int(term)
+ return self
+
+ def __imul__(self, term):
+ self._value *= int(term)
+ return self
+
+ def __imod__(self, term):
+ modulus = int(term)
+ if modulus == 0:
+ raise ZeroDivisionError("Division by zero")
+ if modulus < 0:
+ raise ValueError("Modulus must be positive")
+ self._value %= modulus
+ return self
+
+ # Boolean/bit operations
+ def __and__(self, term):
+ return self.__class__(self._value & int(term))
+
+ def __or__(self, term):
+ return self.__class__(self._value | int(term))
+
+ def __rshift__(self, pos):
+ try:
+ return self.__class__(self._value >> int(pos))
+ except OverflowError:
+ if self._value >= 0:
+ return 0
+ else:
+ return -1
+
+ def __irshift__(self, pos):
+ try:
+ self._value >>= int(pos)
+ except OverflowError:
+ if self._value >= 0:
+ return 0
+ else:
+ return -1
+ return self
+
+ def __lshift__(self, pos):
+ try:
+ return self.__class__(self._value << int(pos))
+ except OverflowError:
+ raise ValueError("Incorrect shift count")
+
+ def __ilshift__(self, pos):
+ try:
+ self._value <<= int(pos)
+ except OverflowError:
+ raise ValueError("Incorrect shift count")
+ return self
+
+ def get_bit(self, n):
+ if self._value < 0:
+ raise ValueError("no bit representation for negative values")
+ try:
+ try:
+ result = (self._value >> n._value) & 1
+ if n._value < 0:
+ raise ValueError("negative bit count")
+ except AttributeError:
+ result = (self._value >> n) & 1
+ if n < 0:
+ raise ValueError("negative bit count")
+ except OverflowError:
+ result = 0
+ return result
+
+ # Extra
+ def is_odd(self):
+ return (self._value & 1) == 1
+
+ def is_even(self):
+ return (self._value & 1) == 0
+
+ def size_in_bits(self):
+
+ if self._value < 0:
+ raise ValueError("Conversion only valid for non-negative numbers")
+
+ if self._value == 0:
+ return 1
+
+ bit_size = 0
+ tmp = self._value
+ while tmp:
+ tmp >>= 1
+ bit_size += 1
+
+ return bit_size
+
+ def size_in_bytes(self):
+ return (self.size_in_bits() - 1) // 8 + 1
+
+ def is_perfect_square(self):
+ if self._value < 0:
+ return False
+ if self._value in (0, 1):
+ return True
+
+ x = self._value // 2
+ square_x = x ** 2
+
+ while square_x > self._value:
+ x = (square_x + self._value) // (2 * x)
+ square_x = x ** 2
+
+ return self._value == x ** 2
+
+ def fail_if_divisible_by(self, small_prime):
+ if (self._value % int(small_prime)) == 0:
+ raise ValueError("Value is composite")
+
+ def multiply_accumulate(self, a, b):
+ self._value += int(a) * int(b)
+ return self
+
+ def set(self, source):
+ self._value = int(source)
+
+ def inplace_inverse(self, modulus):
+ modulus = int(modulus)
+ if modulus == 0:
+ raise ZeroDivisionError("Modulus cannot be zero")
+ if modulus < 0:
+ raise ValueError("Modulus cannot be negative")
+ r_p, r_n = self._value, modulus
+ s_p, s_n = 1, 0
+ while r_n > 0:
+ q = r_p // r_n
+ r_p, r_n = r_n, r_p - q * r_n
+ s_p, s_n = s_n, s_p - q * s_n
+ if r_p != 1:
+ raise ValueError("No inverse value can be computed" + str(r_p))
+ while s_p < 0:
+ s_p += modulus
+ self._value = s_p
+ return self
+
+ def inverse(self, modulus):
+ result = self.__class__(self)
+ result.inplace_inverse(modulus)
+ return result
+
+ def gcd(self, term):
+ r_p, r_n = abs(self._value), abs(int(term))
+ while r_n > 0:
+ q = r_p // r_n
+ r_p, r_n = r_n, r_p - q * r_n
+ return self.__class__(r_p)
+
+ def lcm(self, term):
+ term = int(term)
+ if self._value == 0 or term == 0:
+ return self.__class__(0)
+ return self.__class__(abs((self._value * term) // self.gcd(term)._value))
+
+ @staticmethod
+ def jacobi_symbol(a, n):
+ a = int(a)
+ n = int(n)
+
+ if n <= 0:
+ raise ValueError("n must be a positive integer")
+
+ if (n & 1) == 0:
+ raise ValueError("n must be even for the Jacobi symbol")
+
+ # Step 1
+ a = a % n
+ # Step 2
+ if a == 1 or n == 1:
+ return 1
+ # Step 3
+ if a == 0:
+ return 0
+ # Step 4
+ e = 0
+ a1 = a
+ while (a1 & 1) == 0:
+ a1 >>= 1
+ e += 1
+ # Step 5
+ if (e & 1) == 0:
+ s = 1
+ elif n % 8 in (1, 7):
+ s = 1
+ else:
+ s = -1
+ # Step 6
+ if n % 4 == 3 and a1 % 4 == 3:
+ s = -s
+ # Step 7
+ n1 = n % a1
+ # Step 8
+ return s * IntegerNative.jacobi_symbol(n1, a1)