diff options
Diffstat (limited to 'frozen_deps/Cryptodome/Math/_IntegerNative.py')
-rw-r--r-- | frozen_deps/Cryptodome/Math/_IntegerNative.py | 380 |
1 files changed, 380 insertions, 0 deletions
diff --git a/frozen_deps/Cryptodome/Math/_IntegerNative.py b/frozen_deps/Cryptodome/Math/_IntegerNative.py new file mode 100644 index 0000000..896107f --- /dev/null +++ b/frozen_deps/Cryptodome/Math/_IntegerNative.py @@ -0,0 +1,380 @@ +# =================================================================== +# +# Copyright (c) 2014, Legrandin <[email protected]> +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# 2. Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, +# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT +# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN +# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +# POSSIBILITY OF SUCH DAMAGE. +# =================================================================== + +from ._IntegerBase import IntegerBase + +from Cryptodome.Util.number import long_to_bytes, bytes_to_long + + +class IntegerNative(IntegerBase): + """A class to model a natural integer (including zero)""" + + def __init__(self, value): + if isinstance(value, float): + raise ValueError("A floating point type is not a natural number") + try: + self._value = value._value + except AttributeError: + self._value = value + + # Conversions + def __int__(self): + return self._value + + def __str__(self): + return str(int(self)) + + def __repr__(self): + return "Integer(%s)" % str(self) + + # Only Python 2.x + def __hex__(self): + return hex(self._value) + + # Only Python 3.x + def __index__(self): + return int(self._value) + + def to_bytes(self, block_size=0): + if self._value < 0: + raise ValueError("Conversion only valid for non-negative numbers") + result = long_to_bytes(self._value, block_size) + if len(result) > block_size > 0: + raise ValueError("Value too large to encode") + return result + + @classmethod + def from_bytes(cls, byte_string): + return cls(bytes_to_long(byte_string)) + + # Relations + def __eq__(self, term): + if term is None: + return False + return self._value == int(term) + + def __ne__(self, term): + return not self.__eq__(term) + + def __lt__(self, term): + return self._value < int(term) + + def __le__(self, term): + return self.__lt__(term) or self.__eq__(term) + + def __gt__(self, term): + return not self.__le__(term) + + def __ge__(self, term): + return not self.__lt__(term) + + def __nonzero__(self): + return self._value != 0 + __bool__ = __nonzero__ + + def is_negative(self): + return self._value < 0 + + # Arithmetic operations + def __add__(self, term): + try: + return self.__class__(self._value + int(term)) + except (ValueError, AttributeError, TypeError): + return NotImplemented + + def __sub__(self, term): + try: + return self.__class__(self._value - int(term)) + except (ValueError, AttributeError, TypeError): + return NotImplemented + + def __mul__(self, factor): + try: + return self.__class__(self._value * int(factor)) + except (ValueError, AttributeError, TypeError): + return NotImplemented + + def __floordiv__(self, divisor): + return self.__class__(self._value // int(divisor)) + + def __mod__(self, divisor): + divisor_value = int(divisor) + if divisor_value < 0: + raise ValueError("Modulus must be positive") + return self.__class__(self._value % divisor_value) + + def inplace_pow(self, exponent, modulus=None): + exp_value = int(exponent) + if exp_value < 0: + raise ValueError("Exponent must not be negative") + + if modulus is not None: + mod_value = int(modulus) + if mod_value < 0: + raise ValueError("Modulus must be positive") + if mod_value == 0: + raise ZeroDivisionError("Modulus cannot be zero") + else: + mod_value = None + self._value = pow(self._value, exp_value, mod_value) + return self + + def __pow__(self, exponent, modulus=None): + result = self.__class__(self) + return result.inplace_pow(exponent, modulus) + + def __abs__(self): + return abs(self._value) + + def sqrt(self, modulus=None): + + value = self._value + if modulus is None: + if value < 0: + raise ValueError("Square root of negative value") + # http://stackoverflow.com/questions/15390807/integer-square-root-in-python + + x = value + y = (x + 1) // 2 + while y < x: + x = y + y = (x + value // x) // 2 + result = x + else: + if modulus <= 0: + raise ValueError("Modulus must be positive") + result = self._tonelli_shanks(self % modulus, modulus) + + return self.__class__(result) + + def __iadd__(self, term): + self._value += int(term) + return self + + def __isub__(self, term): + self._value -= int(term) + return self + + def __imul__(self, term): + self._value *= int(term) + return self + + def __imod__(self, term): + modulus = int(term) + if modulus == 0: + raise ZeroDivisionError("Division by zero") + if modulus < 0: + raise ValueError("Modulus must be positive") + self._value %= modulus + return self + + # Boolean/bit operations + def __and__(self, term): + return self.__class__(self._value & int(term)) + + def __or__(self, term): + return self.__class__(self._value | int(term)) + + def __rshift__(self, pos): + try: + return self.__class__(self._value >> int(pos)) + except OverflowError: + if self._value >= 0: + return 0 + else: + return -1 + + def __irshift__(self, pos): + try: + self._value >>= int(pos) + except OverflowError: + if self._value >= 0: + return 0 + else: + return -1 + return self + + def __lshift__(self, pos): + try: + return self.__class__(self._value << int(pos)) + except OverflowError: + raise ValueError("Incorrect shift count") + + def __ilshift__(self, pos): + try: + self._value <<= int(pos) + except OverflowError: + raise ValueError("Incorrect shift count") + return self + + def get_bit(self, n): + if self._value < 0: + raise ValueError("no bit representation for negative values") + try: + try: + result = (self._value >> n._value) & 1 + if n._value < 0: + raise ValueError("negative bit count") + except AttributeError: + result = (self._value >> n) & 1 + if n < 0: + raise ValueError("negative bit count") + except OverflowError: + result = 0 + return result + + # Extra + def is_odd(self): + return (self._value & 1) == 1 + + def is_even(self): + return (self._value & 1) == 0 + + def size_in_bits(self): + + if self._value < 0: + raise ValueError("Conversion only valid for non-negative numbers") + + if self._value == 0: + return 1 + + bit_size = 0 + tmp = self._value + while tmp: + tmp >>= 1 + bit_size += 1 + + return bit_size + + def size_in_bytes(self): + return (self.size_in_bits() - 1) // 8 + 1 + + def is_perfect_square(self): + if self._value < 0: + return False + if self._value in (0, 1): + return True + + x = self._value // 2 + square_x = x ** 2 + + while square_x > self._value: + x = (square_x + self._value) // (2 * x) + square_x = x ** 2 + + return self._value == x ** 2 + + def fail_if_divisible_by(self, small_prime): + if (self._value % int(small_prime)) == 0: + raise ValueError("Value is composite") + + def multiply_accumulate(self, a, b): + self._value += int(a) * int(b) + return self + + def set(self, source): + self._value = int(source) + + def inplace_inverse(self, modulus): + modulus = int(modulus) + if modulus == 0: + raise ZeroDivisionError("Modulus cannot be zero") + if modulus < 0: + raise ValueError("Modulus cannot be negative") + r_p, r_n = self._value, modulus + s_p, s_n = 1, 0 + while r_n > 0: + q = r_p // r_n + r_p, r_n = r_n, r_p - q * r_n + s_p, s_n = s_n, s_p - q * s_n + if r_p != 1: + raise ValueError("No inverse value can be computed" + str(r_p)) + while s_p < 0: + s_p += modulus + self._value = s_p + return self + + def inverse(self, modulus): + result = self.__class__(self) + result.inplace_inverse(modulus) + return result + + def gcd(self, term): + r_p, r_n = abs(self._value), abs(int(term)) + while r_n > 0: + q = r_p // r_n + r_p, r_n = r_n, r_p - q * r_n + return self.__class__(r_p) + + def lcm(self, term): + term = int(term) + if self._value == 0 or term == 0: + return self.__class__(0) + return self.__class__(abs((self._value * term) // self.gcd(term)._value)) + + @staticmethod + def jacobi_symbol(a, n): + a = int(a) + n = int(n) + + if n <= 0: + raise ValueError("n must be a positive integer") + + if (n & 1) == 0: + raise ValueError("n must be even for the Jacobi symbol") + + # Step 1 + a = a % n + # Step 2 + if a == 1 or n == 1: + return 1 + # Step 3 + if a == 0: + return 0 + # Step 4 + e = 0 + a1 = a + while (a1 & 1) == 0: + a1 >>= 1 + e += 1 + # Step 5 + if (e & 1) == 0: + s = 1 + elif n % 8 in (1, 7): + s = 1 + else: + s = -1 + # Step 6 + if n % 4 == 3 and a1 % 4 == 3: + s = -s + # Step 7 + n1 = n % a1 + # Step 8 + return s * IntegerNative.jacobi_symbol(n1, a1) |