aboutsummaryrefslogtreecommitdiff
path: root/frozen_deps/Crypto/PublicKey
diff options
context:
space:
mode:
Diffstat (limited to 'frozen_deps/Crypto/PublicKey')
-rw-r--r--frozen_deps/Crypto/PublicKey/DSA.py379
-rw-r--r--frozen_deps/Crypto/PublicKey/ElGamal.py373
-rw-r--r--frozen_deps/Crypto/PublicKey/RSA.py719
-rw-r--r--frozen_deps/Crypto/PublicKey/_DSA.py115
-rw-r--r--frozen_deps/Crypto/PublicKey/_RSA.py81
-rw-r--r--frozen_deps/Crypto/PublicKey/__init__.py41
-rwxr-xr-xfrozen_deps/Crypto/PublicKey/_fastmath.cpython-38-x86_64-linux-gnu.sobin0 -> 78864 bytes
-rw-r--r--frozen_deps/Crypto/PublicKey/_slowmath.py187
-rw-r--r--frozen_deps/Crypto/PublicKey/pubkey.py240
9 files changed, 2135 insertions, 0 deletions
diff --git a/frozen_deps/Crypto/PublicKey/DSA.py b/frozen_deps/Crypto/PublicKey/DSA.py
new file mode 100644
index 0000000..648f4b2
--- /dev/null
+++ b/frozen_deps/Crypto/PublicKey/DSA.py
@@ -0,0 +1,379 @@
+# -*- coding: utf-8 -*-
+#
+# PublicKey/DSA.py : DSA signature primitive
+#
+# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+
+"""DSA public-key signature algorithm.
+
+DSA_ is a widespread public-key signature algorithm. Its security is
+based on the discrete logarithm problem (DLP_). Given a cyclic
+group, a generator *g*, and an element *h*, it is hard
+to find an integer *x* such that *g^x = h*. The problem is believed
+to be difficult, and it has been proved such (and therefore secure) for
+more than 30 years.
+
+The group is actually a sub-group over the integers modulo *p*, with *p* prime.
+The sub-group order is *q*, which is prime too; it always holds that *(p-1)* is a multiple of *q*.
+The cryptographic strength is linked to the magnitude of *p* and *q*.
+The signer holds a value *x* (*0<x<q-1*) as private key, and its public
+key (*y* where *y=g^x mod p*) is distributed.
+
+In 2012, a sufficient size is deemed to be 2048 bits for *p* and 256 bits for *q*.
+For more information, see the most recent ECRYPT_ report.
+
+DSA is reasonably secure for new designs.
+
+The algorithm can only be used for authentication (digital signature).
+DSA cannot be used for confidentiality (encryption).
+
+The values *(p,q,g)* are called *domain parameters*;
+they are not sensitive but must be shared by both parties (the signer and the verifier).
+Different signers can share the same domain parameters with no security
+concerns.
+
+The DSA signature is twice as big as the size of *q* (64 bytes if *q* is 256 bit
+long).
+
+This module provides facilities for generating new DSA keys and for constructing
+them from known components. DSA keys allows you to perform basic signing and
+verification.
+
+ >>> from Crypto.Random import random
+ >>> from Crypto.PublicKey import DSA
+ >>> from Crypto.Hash import SHA
+ >>>
+ >>> message = "Hello"
+ >>> key = DSA.generate(1024)
+ >>> h = SHA.new(message).digest()
+ >>> k = random.StrongRandom().randint(1,key.q-1)
+ >>> sig = key.sign(h,k)
+ >>> ...
+ >>> if key.verify(h,sig):
+ >>> print "OK"
+ >>> else:
+ >>> print "Incorrect signature"
+
+.. _DSA: http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
+.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
+.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
+"""
+
+__revision__ = "$Id$"
+
+__all__ = ['generate', 'construct', 'error', 'DSAImplementation', '_DSAobj']
+
+import sys
+if sys.version_info[0] == 2 and sys.version_info[1] == 1:
+ from Crypto.Util.py21compat import *
+
+from Crypto.PublicKey import _DSA, _slowmath, pubkey
+from Crypto import Random
+
+try:
+ from Crypto.PublicKey import _fastmath
+except ImportError:
+ _fastmath = None
+
+class _DSAobj(pubkey.pubkey):
+ """Class defining an actual DSA key.
+
+ :undocumented: __getstate__, __setstate__, __repr__, __getattr__
+ """
+ #: Dictionary of DSA parameters.
+ #:
+ #: A public key will only have the following entries:
+ #:
+ #: - **y**, the public key.
+ #: - **g**, the generator.
+ #: - **p**, the modulus.
+ #: - **q**, the order of the sub-group.
+ #:
+ #: A private key will also have:
+ #:
+ #: - **x**, the private key.
+ keydata = ['y', 'g', 'p', 'q', 'x']
+
+ def __init__(self, implementation, key):
+ self.implementation = implementation
+ self.key = key
+
+ def __getattr__(self, attrname):
+ if attrname in self.keydata:
+ # For backward compatibility, allow the user to get (not set) the
+ # DSA key parameters directly from this object.
+ return getattr(self.key, attrname)
+ else:
+ raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
+
+ def sign(self, M, K):
+ """Sign a piece of data with DSA.
+
+ :Parameter M: The piece of data to sign with DSA. It may
+ not be longer in bit size than the sub-group order (*q*).
+ :Type M: byte string or long
+
+ :Parameter K: A secret number, chosen randomly in the closed
+ range *[1,q-1]*.
+ :Type K: long (recommended) or byte string (not recommended)
+
+ :attention: selection of *K* is crucial for security. Generating a
+ random number larger than *q* and taking the modulus by *q* is
+ **not** secure, since smaller values will occur more frequently.
+ Generating a random number systematically smaller than *q-1*
+ (e.g. *floor((q-1)/8)* random bytes) is also **not** secure. In general,
+ it shall not be possible for an attacker to know the value of `any
+ bit of K`__.
+
+ :attention: The number *K* shall not be reused for any other
+ operation and shall be discarded immediately.
+
+ :attention: M must be a digest cryptographic hash, otherwise
+ an attacker may mount an existential forgery attack.
+
+ :Return: A tuple with 2 longs.
+
+ .. __: http://www.di.ens.fr/~pnguyen/pub_NgSh00.htm
+ """
+ return pubkey.pubkey.sign(self, M, K)
+
+ def verify(self, M, signature):
+ """Verify the validity of a DSA signature.
+
+ :Parameter M: The expected message.
+ :Type M: byte string or long
+
+ :Parameter signature: The DSA signature to verify.
+ :Type signature: A tuple with 2 longs as return by `sign`
+
+ :Return: True if the signature is correct, False otherwise.
+ """
+ return pubkey.pubkey.verify(self, M, signature)
+
+ def _encrypt(self, c, K):
+ raise TypeError("DSA cannot encrypt")
+
+ def _decrypt(self, c):
+ raise TypeError("DSA cannot decrypt")
+
+ def _blind(self, m, r):
+ raise TypeError("DSA cannot blind")
+
+ def _unblind(self, m, r):
+ raise TypeError("DSA cannot unblind")
+
+ def _sign(self, m, k):
+ return self.key._sign(m, k)
+
+ def _verify(self, m, sig):
+ (r, s) = sig
+ return self.key._verify(m, r, s)
+
+ def has_private(self):
+ return self.key.has_private()
+
+ def size(self):
+ return self.key.size()
+
+ def can_blind(self):
+ return False
+
+ def can_encrypt(self):
+ return False
+
+ def can_sign(self):
+ return True
+
+ def publickey(self):
+ return self.implementation.construct((self.key.y, self.key.g, self.key.p, self.key.q))
+
+ def __getstate__(self):
+ d = {}
+ for k in self.keydata:
+ try:
+ d[k] = getattr(self.key, k)
+ except AttributeError:
+ pass
+ return d
+
+ def __setstate__(self, d):
+ if not hasattr(self, 'implementation'):
+ self.implementation = DSAImplementation()
+ t = []
+ for k in self.keydata:
+ if k not in d:
+ break
+ t.append(d[k])
+ self.key = self.implementation._math.dsa_construct(*tuple(t))
+
+ def __repr__(self):
+ attrs = []
+ for k in self.keydata:
+ if k == 'p':
+ attrs.append("p(%d)" % (self.size()+1,))
+ elif hasattr(self.key, k):
+ attrs.append(k)
+ if self.has_private():
+ attrs.append("private")
+ # PY3K: This is meant to be text, do not change to bytes (data)
+ return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs))
+
+class DSAImplementation(object):
+ """
+ A DSA key factory.
+
+ This class is only internally used to implement the methods of the
+ `Crypto.PublicKey.DSA` module.
+ """
+
+ def __init__(self, **kwargs):
+ """Create a new DSA key factory.
+
+ :Keywords:
+ use_fast_math : bool
+ Specify which mathematic library to use:
+
+ - *None* (default). Use fastest math available.
+ - *True* . Use fast math.
+ - *False* . Use slow math.
+ default_randfunc : callable
+ Specify how to collect random data:
+
+ - *None* (default). Use Random.new().read().
+ - not *None* . Use the specified function directly.
+ :Raise RuntimeError:
+ When **use_fast_math** =True but fast math is not available.
+ """
+ use_fast_math = kwargs.get('use_fast_math', None)
+ if use_fast_math is None: # Automatic
+ if _fastmath is not None:
+ self._math = _fastmath
+ else:
+ self._math = _slowmath
+
+ elif use_fast_math: # Explicitly select fast math
+ if _fastmath is not None:
+ self._math = _fastmath
+ else:
+ raise RuntimeError("fast math module not available")
+
+ else: # Explicitly select slow math
+ self._math = _slowmath
+
+ self.error = self._math.error
+
+ # 'default_randfunc' parameter:
+ # None (default) - use Random.new().read
+ # not None - use the specified function
+ self._default_randfunc = kwargs.get('default_randfunc', None)
+ self._current_randfunc = None
+
+ def _get_randfunc(self, randfunc):
+ if randfunc is not None:
+ return randfunc
+ elif self._current_randfunc is None:
+ self._current_randfunc = Random.new().read
+ return self._current_randfunc
+
+ def generate(self, bits, randfunc=None, progress_func=None):
+ """Randomly generate a fresh, new DSA key.
+
+ :Parameters:
+ bits : int
+ Key length, or size (in bits) of the DSA modulus
+ *p*.
+ It must be a multiple of 64, in the closed
+ interval [512,1024].
+ randfunc : callable
+ Random number generation function; it should accept
+ a single integer N and return a string of random data
+ N bytes long.
+ If not specified, a new one will be instantiated
+ from ``Crypto.Random``.
+ progress_func : callable
+ Optional function that will be called with a short string
+ containing the key parameter currently being generated;
+ it's useful for interactive applications where a user is
+ waiting for a key to be generated.
+
+ :attention: You should always use a cryptographically secure random number generator,
+ such as the one defined in the ``Crypto.Random`` module; **don't** just use the
+ current time and the ``random`` module.
+
+ :Return: A DSA key object (`_DSAobj`).
+
+ :Raise ValueError:
+ When **bits** is too little, too big, or not a multiple of 64.
+ """
+
+ # Check against FIPS 186-2, which says that the size of the prime p
+ # must be a multiple of 64 bits between 512 and 1024
+ for i in (0, 1, 2, 3, 4, 5, 6, 7, 8):
+ if bits == 512 + 64*i:
+ return self._generate(bits, randfunc, progress_func)
+
+ # The March 2006 draft of FIPS 186-3 also allows 2048 and 3072-bit
+ # primes, but only with longer q values. Since the current DSA
+ # implementation only supports a 160-bit q, we don't support larger
+ # values.
+ raise ValueError("Number of bits in p must be a multiple of 64 between 512 and 1024, not %d bits" % (bits,))
+
+ def _generate(self, bits, randfunc=None, progress_func=None):
+ rf = self._get_randfunc(randfunc)
+ obj = _DSA.generate_py(bits, rf, progress_func) # TODO: Don't use legacy _DSA module
+ key = self._math.dsa_construct(obj.y, obj.g, obj.p, obj.q, obj.x)
+ return _DSAobj(self, key)
+
+ def construct(self, tup):
+ """Construct a DSA key from a tuple of valid DSA components.
+
+ The modulus *p* must be a prime.
+
+ The following equations must apply:
+
+ - p-1 = 0 mod q
+ - g^x = y mod p
+ - 0 < x < q
+ - 1 < g < p
+
+ :Parameters:
+ tup : tuple
+ A tuple of long integers, with 4 or 5 items
+ in the following order:
+
+ 1. Public key (*y*).
+ 2. Sub-group generator (*g*).
+ 3. Modulus, finite field order (*p*).
+ 4. Sub-group order (*q*).
+ 5. Private key (*x*). Optional.
+
+ :Return: A DSA key object (`_DSAobj`).
+ """
+ key = self._math.dsa_construct(*tup)
+ return _DSAobj(self, key)
+
+_impl = DSAImplementation()
+generate = _impl.generate
+construct = _impl.construct
+error = _impl.error
+
+# vim:set ts=4 sw=4 sts=4 expandtab:
+
diff --git a/frozen_deps/Crypto/PublicKey/ElGamal.py b/frozen_deps/Crypto/PublicKey/ElGamal.py
new file mode 100644
index 0000000..99af71c
--- /dev/null
+++ b/frozen_deps/Crypto/PublicKey/ElGamal.py
@@ -0,0 +1,373 @@
+#
+# ElGamal.py : ElGamal encryption/decryption and signatures
+#
+# Part of the Python Cryptography Toolkit
+#
+# Originally written by: A.M. Kuchling
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+
+"""ElGamal public-key algorithm (randomized encryption and signature).
+
+Signature algorithm
+-------------------
+The security of the ElGamal signature scheme is based (like DSA) on the discrete
+logarithm problem (DLP_). Given a cyclic group, a generator *g*,
+and an element *h*, it is hard to find an integer *x* such that *g^x = h*.
+
+The group is the largest multiplicative sub-group of the integers modulo *p*,
+with *p* prime.
+The signer holds a value *x* (*0<x<p-1*) as private key, and its public
+key (*y* where *y=g^x mod p*) is distributed.
+
+The ElGamal signature is twice as big as *p*.
+
+Encryption algorithm
+--------------------
+The security of the ElGamal encryption scheme is based on the computational
+Diffie-Hellman problem (CDH_). Given a cyclic group, a generator *g*,
+and two integers *a* and *b*, it is difficult to find
+the element *g^{ab}* when only *g^a* and *g^b* are known, and not *a* and *b*.
+
+As before, the group is the largest multiplicative sub-group of the integers
+modulo *p*, with *p* prime.
+The receiver holds a value *a* (*0<a<p-1*) as private key, and its public key
+(*b* where *b*=g^a*) is given to the sender.
+
+The ElGamal ciphertext is twice as big as *p*.
+
+Domain parameters
+-----------------
+For both signature and encryption schemes, the values *(p,g)* are called
+*domain parameters*.
+They are not sensitive but must be distributed to all parties (senders and
+receivers).
+Different signers can share the same domain parameters, as can
+different recipients of encrypted messages.
+
+Security
+--------
+Both DLP and CDH problem are believed to be difficult, and they have been proved
+such (and therefore secure) for more than 30 years.
+
+The cryptographic strength is linked to the magnitude of *p*.
+In 2012, a sufficient size for *p* is deemed to be 2048 bits.
+For more information, see the most recent ECRYPT_ report.
+
+Even though ElGamal algorithms are in theory reasonably secure for new designs,
+in practice there are no real good reasons for using them.
+The signature is four times larger than the equivalent DSA, and the ciphertext
+is two times larger than the equivalent RSA.
+
+Functionality
+-------------
+This module provides facilities for generating new ElGamal keys and for constructing
+them from known components. ElGamal keys allows you to perform basic signing,
+verification, encryption, and decryption.
+
+ >>> from Crypto import Random
+ >>> from Crypto.Random import random
+ >>> from Crypto.PublicKey import ElGamal
+ >>> from Crypto.Util.number import GCD
+ >>> from Crypto.Hash import SHA
+ >>>
+ >>> message = "Hello"
+ >>> key = ElGamal.generate(1024, Random.new().read)
+ >>> h = SHA.new(message).digest()
+ >>> while 1:
+ >>> k = random.StrongRandom().randint(1,key.p-1)
+ >>> if GCD(k,key.p-1)==1: break
+ >>> sig = key.sign(h,k)
+ >>> ...
+ >>> if key.verify(h,sig):
+ >>> print "OK"
+ >>> else:
+ >>> print "Incorrect signature"
+
+.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
+.. _CDH: http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption
+.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
+"""
+
+__revision__ = "$Id$"
+
+__all__ = ['generate', 'construct', 'error', 'ElGamalobj']
+
+from Crypto.PublicKey.pubkey import *
+from Crypto.Util import number
+
+class error (Exception):
+ pass
+
+# Generate an ElGamal key with N bits
+def generate(bits, randfunc, progress_func=None):
+ """Randomly generate a fresh, new ElGamal key.
+
+ The key will be safe for use for both encryption and signature
+ (although it should be used for **only one** purpose).
+
+ :Parameters:
+ bits : int
+ Key length, or size (in bits) of the modulus *p*.
+ Recommended value is 2048.
+ randfunc : callable
+ Random number generation function; it should accept
+ a single integer N and return a string of random data
+ N bytes long.
+ progress_func : callable
+ Optional function that will be called with a short string
+ containing the key parameter currently being generated;
+ it's useful for interactive applications where a user is
+ waiting for a key to be generated.
+
+ :attention: You should always use a cryptographically secure random number generator,
+ such as the one defined in the ``Crypto.Random`` module; **don't** just use the
+ current time and the ``random`` module.
+
+ :Return: An ElGamal key object (`ElGamalobj`).
+ """
+ obj=ElGamalobj()
+ # Generate a safe prime p
+ # See Algorithm 4.86 in Handbook of Applied Cryptography
+ if progress_func:
+ progress_func('p\n')
+ while 1:
+ q = bignum(getPrime(bits-1, randfunc))
+ obj.p = 2*q+1
+ if number.isPrime(obj.p, randfunc=randfunc):
+ break
+ # Generate generator g
+ # See Algorithm 4.80 in Handbook of Applied Cryptography
+ # Note that the order of the group is n=p-1=2q, where q is prime
+ if progress_func:
+ progress_func('g\n')
+ while 1:
+ # We must avoid g=2 because of Bleichenbacher's attack described
+ # in "Generating ElGamal signatures without knowning the secret key",
+ # 1996
+ #
+ obj.g = number.getRandomRange(3, obj.p, randfunc)
+ safe = 1
+ if pow(obj.g, 2, obj.p)==1:
+ safe=0
+ if safe and pow(obj.g, q, obj.p)==1:
+ safe=0
+ # Discard g if it divides p-1 because of the attack described
+ # in Note 11.67 (iii) in HAC
+ if safe and divmod(obj.p-1, obj.g)[1]==0:
+ safe=0
+ # g^{-1} must not divide p-1 because of Khadir's attack
+ # described in "Conditions of the generator for forging ElGamal
+ # signature", 2011
+ ginv = number.inverse(obj.g, obj.p)
+ if safe and divmod(obj.p-1, ginv)[1]==0:
+ safe=0
+ if safe:
+ break
+ # Generate private key x
+ if progress_func:
+ progress_func('x\n')
+ obj.x=number.getRandomRange(2, obj.p-1, randfunc)
+ # Generate public key y
+ if progress_func:
+ progress_func('y\n')
+ obj.y = pow(obj.g, obj.x, obj.p)
+ return obj
+
+def construct(tup):
+ """Construct an ElGamal key from a tuple of valid ElGamal components.
+
+ The modulus *p* must be a prime.
+
+ The following conditions must apply:
+
+ - 1 < g < p-1
+ - g^{p-1} = 1 mod p
+ - 1 < x < p-1
+ - g^x = y mod p
+
+ :Parameters:
+ tup : tuple
+ A tuple of long integers, with 3 or 4 items
+ in the following order:
+
+ 1. Modulus (*p*).
+ 2. Generator (*g*).
+ 3. Public key (*y*).
+ 4. Private key (*x*). Optional.
+
+ :Return: An ElGamal key object (`ElGamalobj`).
+ """
+
+ obj=ElGamalobj()
+ if len(tup) not in [3,4]:
+ raise ValueError('argument for construct() wrong length')
+ for i in range(len(tup)):
+ field = obj.keydata[i]
+ setattr(obj, field, tup[i])
+ return obj
+
+class ElGamalobj(pubkey):
+ """Class defining an ElGamal key.
+
+ :undocumented: __getstate__, __setstate__, __repr__, __getattr__
+ """
+
+ #: Dictionary of ElGamal parameters.
+ #:
+ #: A public key will only have the following entries:
+ #:
+ #: - **y**, the public key.
+ #: - **g**, the generator.
+ #: - **p**, the modulus.
+ #:
+ #: A private key will also have:
+ #:
+ #: - **x**, the private key.
+ keydata=['p', 'g', 'y', 'x']
+
+ def encrypt(self, plaintext, K):
+ """Encrypt a piece of data with ElGamal.
+
+ :Parameter plaintext: The piece of data to encrypt with ElGamal.
+ It must be numerically smaller than the module (*p*).
+ :Type plaintext: byte string or long
+
+ :Parameter K: A secret number, chosen randomly in the closed
+ range *[1,p-2]*.
+ :Type K: long (recommended) or byte string (not recommended)
+
+ :Return: A tuple with two items. Each item is of the same type as the
+ plaintext (string or long).
+
+ :attention: selection of *K* is crucial for security. Generating a
+ random number larger than *p-1* and taking the modulus by *p-1* is
+ **not** secure, since smaller values will occur more frequently.
+ Generating a random number systematically smaller than *p-1*
+ (e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
+ In general, it shall not be possible for an attacker to know
+ the value of any bit of K.
+
+ :attention: The number *K* shall not be reused for any other
+ operation and shall be discarded immediately.
+ """
+ return pubkey.encrypt(self, plaintext, K)
+
+ def decrypt(self, ciphertext):
+ """Decrypt a piece of data with ElGamal.
+
+ :Parameter ciphertext: The piece of data to decrypt with ElGamal.
+ :Type ciphertext: byte string, long or a 2-item tuple as returned
+ by `encrypt`
+
+ :Return: A byte string if ciphertext was a byte string or a tuple
+ of byte strings. A long otherwise.
+ """
+ return pubkey.decrypt(self, ciphertext)
+
+ def sign(self, M, K):
+ """Sign a piece of data with ElGamal.
+
+ :Parameter M: The piece of data to sign with ElGamal. It may
+ not be longer in bit size than *p-1*.
+ :Type M: byte string or long
+
+ :Parameter K: A secret number, chosen randomly in the closed
+ range *[1,p-2]* and such that *gcd(k,p-1)=1*.
+ :Type K: long (recommended) or byte string (not recommended)
+
+ :attention: selection of *K* is crucial for security. Generating a
+ random number larger than *p-1* and taking the modulus by *p-1* is
+ **not** secure, since smaller values will occur more frequently.
+ Generating a random number systematically smaller than *p-1*
+ (e.g. *floor((p-1)/8)* random bytes) is also **not** secure.
+ In general, it shall not be possible for an attacker to know
+ the value of any bit of K.
+
+ :attention: The number *K* shall not be reused for any other
+ operation and shall be discarded immediately.
+
+ :attention: M must be be a cryptographic hash, otherwise an
+ attacker may mount an existential forgery attack.
+
+ :Return: A tuple with 2 longs.
+ """
+ return pubkey.sign(self, M, K)
+
+ def verify(self, M, signature):
+ """Verify the validity of an ElGamal signature.
+
+ :Parameter M: The expected message.
+ :Type M: byte string or long
+
+ :Parameter signature: The ElGamal signature to verify.
+ :Type signature: A tuple with 2 longs as return by `sign`
+
+ :Return: True if the signature is correct, False otherwise.
+ """
+ return pubkey.verify(self, M, signature)
+
+ def _encrypt(self, M, K):
+ a=pow(self.g, K, self.p)
+ b=( M*pow(self.y, K, self.p) ) % self.p
+ return ( a,b )
+
+ def _decrypt(self, M):
+ if (not hasattr(self, 'x')):
+ raise TypeError('Private key not available in this object')
+ ax=pow(M[0], self.x, self.p)
+ plaintext=(M[1] * inverse(ax, self.p ) ) % self.p
+ return plaintext
+
+ def _sign(self, M, K):
+ if (not hasattr(self, 'x')):
+ raise TypeError('Private key not available in this object')
+ p1=self.p-1
+ if (GCD(K, p1)!=1):
+ raise ValueError('Bad K value: GCD(K,p-1)!=1')
+ a=pow(self.g, K, self.p)
+ t=(M-self.x*a) % p1
+ while t<0: t=t+p1
+ b=(t*inverse(K, p1)) % p1
+ return (a, b)
+
+ def _verify(self, M, sig):
+ if sig[0]<1 or sig[0]>self.p-1:
+ return 0
+ v1=pow(self.y, sig[0], self.p)
+ v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
+ v2=pow(self.g, M, self.p)
+ if v1==v2:
+ return 1
+ return 0
+
+ def size(self):
+ return number.size(self.p) - 1
+
+ def has_private(self):
+ if hasattr(self, 'x'):
+ return 1
+ else:
+ return 0
+
+ def publickey(self):
+ return construct((self.p, self.g, self.y))
+
+
+object=ElGamalobj
diff --git a/frozen_deps/Crypto/PublicKey/RSA.py b/frozen_deps/Crypto/PublicKey/RSA.py
new file mode 100644
index 0000000..debe39e
--- /dev/null
+++ b/frozen_deps/Crypto/PublicKey/RSA.py
@@ -0,0 +1,719 @@
+# -*- coding: utf-8 -*-
+#
+# PublicKey/RSA.py : RSA public key primitive
+#
+# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
+#
+# ===================================================================
+# The contents of this file are dedicated to the public domain. To
+# the extent that dedication to the public domain is not available,
+# everyone is granted a worldwide, perpetual, royalty-free,
+# non-exclusive license to exercise all rights associated with the
+# contents of this file for any purpose whatsoever.
+# No rights are reserved.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+# ===================================================================
+
+"""RSA public-key cryptography algorithm (signature and encryption).
+
+RSA_ is the most widespread and used public key algorithm. Its security is
+based on the difficulty of factoring large integers. The algorithm has
+withstood attacks for 30 years, and it is therefore considered reasonably
+secure for new designs.
+
+The algorithm can be used for both confidentiality (encryption) and
+authentication (digital signature). It is worth noting that signing and
+decryption are significantly slower than verification and encryption.
+The cryptograhic strength is primarily linked to the length of the modulus *n*.
+In 2012, a sufficient length is deemed to be 2048 bits. For more information,
+see the most recent ECRYPT_ report.
+
+Both RSA ciphertext and RSA signature are as big as the modulus *n* (256
+bytes if *n* is 2048 bit long).
+
+This module provides facilities for generating fresh, new RSA keys, constructing
+them from known components, exporting them, and importing them.
+
+ >>> from Crypto.PublicKey import RSA
+ >>>
+ >>> key = RSA.generate(2048)
+ >>> f = open('mykey.pem','w')
+ >>> f.write(RSA.exportKey('PEM'))
+ >>> f.close()
+ ...
+ >>> f = open('mykey.pem','r')
+ >>> key = RSA.importKey(f.read())
+
+Even though you may choose to directly use the methods of an RSA key object
+to perform the primitive cryptographic operations (e.g. `_RSAobj.encrypt`),
+it is recommended to use one of the standardized schemes instead (like
+`Crypto.Cipher.PKCS1_v1_5` or `Crypto.Signature.PKCS1_v1_5`).
+
+.. _RSA: http://en.wikipedia.org/wiki/RSA_%28algorithm%29
+.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
+
+:sort: generate,construct,importKey,error
+"""
+
+__revision__ = "$Id$"
+
+__all__ = ['generate', 'construct', 'error', 'importKey', 'RSAImplementation', '_RSAobj']
+
+import sys
+if sys.version_info[0] == 2 and sys.version_info[1] == 1:
+ from Crypto.Util.py21compat import *
+from Crypto.Util.py3compat import *
+#from Crypto.Util.python_compat import *
+from Crypto.Util.number import getRandomRange, bytes_to_long, long_to_bytes
+
+from Crypto.PublicKey import _RSA, _slowmath, pubkey
+from Crypto import Random
+
+from Crypto.Util.asn1 import DerObject, DerSequence, DerNull
+import binascii
+import struct
+
+from Crypto.Util.number import inverse
+
+from Crypto.Util.number import inverse
+
+try:
+ from Crypto.PublicKey import _fastmath
+except ImportError:
+ _fastmath = None
+
+class _RSAobj(pubkey.pubkey):
+ """Class defining an actual RSA key.
+
+ :undocumented: __getstate__, __setstate__, __repr__, __getattr__
+ """
+ #: Dictionary of RSA parameters.
+ #:
+ #: A public key will only have the following entries:
+ #:
+ #: - **n**, the modulus.
+ #: - **e**, the public exponent.
+ #:
+ #: A private key will also have:
+ #:
+ #: - **d**, the private exponent.
+ #: - **p**, the first factor of n.
+ #: - **q**, the second factor of n.
+ #: - **u**, the CRT coefficient (1/p) mod q.
+ keydata = ['n', 'e', 'd', 'p', 'q', 'u']
+
+ def __init__(self, implementation, key, randfunc=None):
+ self.implementation = implementation
+ self.key = key
+ if randfunc is None:
+ randfunc = Random.new().read
+ self._randfunc = randfunc
+
+ def __getattr__(self, attrname):
+ if attrname in self.keydata:
+ # For backward compatibility, allow the user to get (not set) the
+ # RSA key parameters directly from this object.
+ return getattr(self.key, attrname)
+ else:
+ raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,))
+
+ def encrypt(self, plaintext, K):
+ """Encrypt a piece of data with RSA.
+
+ :Parameter plaintext: The piece of data to encrypt with RSA. It may not
+ be numerically larger than the RSA module (**n**).
+ :Type plaintext: byte string or long
+
+ :Parameter K: A random parameter (*for compatibility only. This
+ value will be ignored*)