aboutsummaryrefslogtreecommitdiff
path: root/freezed_deps/ecdsa/ecdsa.py
diff options
context:
space:
mode:
Diffstat (limited to 'freezed_deps/ecdsa/ecdsa.py')
-rw-r--r--freezed_deps/ecdsa/ecdsa.py446
1 files changed, 446 insertions, 0 deletions
diff --git a/freezed_deps/ecdsa/ecdsa.py b/freezed_deps/ecdsa/ecdsa.py
new file mode 100644
index 0000000..4e9bab0
--- /dev/null
+++ b/freezed_deps/ecdsa/ecdsa.py
@@ -0,0 +1,446 @@
+#! /usr/bin/env python
+
+"""
+Implementation of Elliptic-Curve Digital Signatures.
+
+Classes and methods for elliptic-curve signatures:
+private keys, public keys, signatures,
+NIST prime-modulus curves with modulus lengths of
+192, 224, 256, 384, and 521 bits.
+
+Example:
+
+ # (In real-life applications, you would probably want to
+ # protect against defects in SystemRandom.)
+ from random import SystemRandom
+ randrange = SystemRandom().randrange
+
+ # Generate a public/private key pair using the NIST Curve P-192:
+
+ g = generator_192
+ n = g.order()
+ secret = randrange( 1, n )
+ pubkey = Public_key( g, g * secret )
+ privkey = Private_key( pubkey, secret )
+
+ # Signing a hash value:
+
+ hash = randrange( 1, n )
+ signature = privkey.sign( hash, randrange( 1, n ) )
+
+ # Verifying a signature for a hash value:
+
+ if pubkey.verifies( hash, signature ):
+ print_("Demo verification succeeded.")
+ else:
+ print_("*** Demo verification failed.")
+
+ # Verification fails if the hash value is modified:
+
+ if pubkey.verifies( hash-1, signature ):
+ print_("**** Demo verification failed to reject tampered hash.")
+ else:
+ print_("Demo verification correctly rejected tampered hash.")
+
+Version of 2009.05.16.
+
+Revision history:
+ 2005.12.31 - Initial version.
+ 2008.11.25 - Substantial revisions introducing new classes.
+ 2009.05.16 - Warn against using random.randrange in real applications.
+ 2009.05.17 - Use random.SystemRandom by default.
+
+Written in 2005 by Peter Pearson and placed in the public domain.
+"""
+
+from six import int2byte, b
+from . import ellipticcurve
+from . import numbertheory
+from .util import bit_length
+
+
+class RSZeroError(RuntimeError):
+ pass
+
+
+class InvalidPointError(RuntimeError):
+ pass
+
+
+class Signature(object):
+ """ECDSA signature.
+ """
+ def __init__(self, r, s):
+ self.r = r
+ self.s = s
+
+ def recover_public_keys(self, hash, generator):
+ """Returns two public keys for which the signature is valid
+ hash is signed hash
+ generator is the used generator of the signature
+ """
+ curve = generator.curve()
+ n = generator.order()
+ r = self.r
+ s = self.s
+ e = hash
+ x = r
+
+ # Compute the curve point with x as x-coordinate
+ alpha = (pow(x, 3, curve.p()) + (curve.a() * x) + curve.b()) % curve.p()
+ beta = numbertheory.square_root_mod_prime(alpha, curve.p())
+ y = beta if beta % 2 == 0 else curve.p() - beta
+
+ # Compute the public key
+ R1 = ellipticcurve.PointJacobi(curve, x, y, 1, n)
+ Q1 = numbertheory.inverse_mod(r, n) * (s * R1 + (-e % n) * generator)
+ Pk1 = Public_key(generator, Q1)
+
+ # And the second solution
+ R2 = ellipticcurve.PointJacobi(curve, x, -y, 1, n)
+ Q2 = numbertheory.inverse_mod(r, n) * (s * R2 + (-e % n) * generator)
+ Pk2 = Public_key(generator, Q2)
+
+ return [Pk1, Pk2]
+
+
+class Public_key(object):
+ """Public key for ECDSA.
+ """
+
+ def __init__(self, generator, point, verify=True):
+ """
+ Low level ECDSA public key object.
+
+ :param generator: the Point that generates the group (the base point)
+ :param point: the Point that defines the public key
+ :param bool verify: if True check if point is valid point on curve
+
+ :raises InvalidPointError: if the point parameters are invalid or
+ point does not lie on the curve
+ """
+
+ self.curve = generator.curve()
+ self.generator = generator
+ self.point = point
+ n = generator.order()
+ p = self.curve.p()
+ if not (0 <= point.x() < p) or not (0 <= point.y() < p):
+ raise InvalidPointError("The public point has x or y out of range.")
+ if verify and not self.curve.contains_point(point.x(), point.y()):
+ raise InvalidPointError("Point does not lie on the curve")
+ if not n:
+ raise InvalidPointError("Generator point must have order.")
+ # for curve parameters with base point with cofactor 1, all points
+ # that are on the curve are scalar multiples of the base point, so
+ # verifying that is not necessary. See Section 3.2.2.1 of SEC 1 v2
+ if verify and self.curve.cofactor() != 1 and \
+ not n * point == ellipticcurve.INFINITY:
+ raise InvalidPointError("Generator point order is bad.")
+
+ def __eq__(self, other):
+ if isinstance(other, Public_key):
+ """Return True if the points are identical, False otherwise."""
+ return self.curve == other.curve \
+ and self.point == other.point
+ return NotImplemented
+
+ def verifies(self, hash, signature):
+ """Verify that signature is a valid signature of hash.
+ Return True if the signature is valid.
+ """
+
+ # From X9.62 J.3.1.
+
+ G = self.generator
+ n = G.order()
+ r = signature.r
+ s = signature.s
+ if r < 1 or r > n - 1:
+ return False
+ if s < 1 or s > n - 1:
+ return False
+ c = numbertheory.inverse_mod(s, n)
+ u1 = (hash * c) % n
+ u2 = (r * c) % n
+ if hasattr(G, "mul_add"):
+ xy = G.mul_add(u1, self.point, u2)
+ else:
+ xy = u1 * G + u2 * self.point
+ v = xy.x() % n
+ return v == r
+
+
+class Private_key(object):
+ """Private key for ECDSA.
+ """
+
+ def __init__(self, public_key, secret_multiplier):
+ """public_key is of class Public_key;
+ secret_multiplier is a large integer.
+ """
+
+ self.public_key = public_key
+ self.secret_multiplier = secret_multiplier
+
+ def __eq__(self, other):
+ if isinstance(other, Private_key):
+ """Return True if the points are identical, False otherwise."""
+ return self.public_key == other.public_key \
+ and self.secret_multiplier == other.secret_multiplier
+ return NotImplemented
+
+ def sign(self, hash, random_k):
+ """Return a signature for the provided hash, using the provided
+ random nonce. It is absolutely vital that random_k be an unpredictable
+ number in the range [1, self.public_key.point.order()-1]. If
+ an attacker can guess random_k, he can compute our private key from a
+ single signature. Also, if an attacker knows a few high-order
+ bits (or a few low-order bits) of random_k, he can compute our private
+ key from many signatures. The generation of nonces with adequate
+ cryptographic strength is very difficult and far beyond the scope
+ of this comment.
+
+ May raise RuntimeError, in which case retrying with a new
+ random value k is in order.
+ """
+
+ G = self.public_key.generator
+ n = G.order()
+ k = random_k % n
+ # Fix the bit-length of the random nonce,
+ # so that it doesn't leak via timing.
+ # This does not change that ks = k mod n
+ ks = k + n
+ kt = ks + n
+ if bit_length(ks) == bit_length(n):
+ p1 = kt * G
+ else:
+ p1 = ks * G
+ r = p1.x() % n
+ if r == 0:
+ raise RSZeroError("amazingly unlucky random number r")
+ s = (numbertheory.inverse_mod(k, n)
+ * (hash + (self.secret_multiplier * r) % n)) % n
+ if s == 0:
+ raise RSZeroError("amazingly unlucky random number s")
+ return Signature(r, s)
+
+
+def int_to_string(x):
+ """Convert integer x into a string of bytes, as per X9.62."""
+ assert x >= 0
+ if x == 0:
+ return b('\0')
+ result = []
+ while x:
+ ordinal = x & 0xFF
+ result.append(int2byte(ordinal))
+ x >>= 8
+
+ result.reverse()
+ return b('').join(result)
+
+
+def string_to_int(s):
+ """Convert a string of bytes into an integer, as per X9.62."""
+ result = 0
+ for c in s:
+ if not isinstance(c, int):
+ c = ord(c)
+ result = 256 * result + c
+ return result
+
+
+def digest_integer(m):
+ """Convert an integer into a string of bytes, compute
+ its SHA-1 hash, and convert the result to an integer."""
+ #
+ # I don't expect this function to be used much. I wrote
+ # it in order to be able to duplicate the examples
+ # in ECDSAVS.
+ #
+ from hashlib import sha1
+ return string_to_int(sha1(int_to_string(m)).digest())
+
+
+def point_is_valid(generator, x, y):
+ """Is (x,y) a valid public key based on the specified generator?"""
+
+ # These are the tests specified in X9.62.
+
+ n = generator.order()
+ curve = generator.curve()
+ p = curve.p()
+ if not (0 <= x < p) or not (0 <= y < p):
+ return False
+ if not curve.contains_point(x, y):
+ return False
+ if curve.cofactor() != 1 and \
+ not n * ellipticcurve.PointJacobi(curve, x, y, 1)\
+ == ellipticcurve.INFINITY:
+ return False
+ return True
+
+
+# NIST Curve P-192:
+_p = 6277101735386680763835789423207666416083908700390324961279
+_r = 6277101735386680763835789423176059013767194773182842284081
+# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
+# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L
+_b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
+_Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
+_Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811
+
+curve_192 = ellipticcurve.CurveFp(_p, -3, _b, 1)
+generator_192 = ellipticcurve.PointJacobi(
+ curve_192, _Gx, _Gy, 1, _r, generator=True)
+
+
+# NIST Curve P-224:
+_p = 26959946667150639794667015087019630673557916260026308143510066298881
+_r = 26959946667150639794667015087019625940457807714424391721682722368061
+# s = 0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5L
+# c = 0x5b056c7e11dd68f40469ee7f3c7a7d74f7d121116506d031218291fbL
+_b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4
+_Gx = 0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21
+_Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34
+
+curve_224 = ellipticcurve.CurveFp(_p, -3, _b, 1)
+generator_224 = ellipticcurve.PointJacobi(
+ curve_224, _Gx, _Gy, 1, _r, generator=True)
+
+# NIST Curve P-256:
+_p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
+_r = 115792089210356248762697446949407573529996955224135760342422259061068512044369
+# s = 0xc49d360886e704936a6678e1139d26b7819f7e90L
+# c = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0dL
+_b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b
+_Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296
+_Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5
+
+curve_256 = ellipticcurve.CurveFp(_p, -3, _b, 1)
+generator_256 = ellipticcurve.PointJacobi(
+ curve_256, _Gx, _Gy, 1, _r, generator=True)
+
+# NIST Curve P-384:
+_p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319
+_r = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643
+# s = 0xa335926aa319a27a1d00896a6773a4827acdac73L
+# c = 0x79d1e655f868f02fff48dcdee14151ddb80643c1406d0ca10dfe6fc52009540a495e8042ea5f744f6e184667cc722483L
+_b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef
+_Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7
+_Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f
+
+curve_384 = ellipticcurve.CurveFp(_p, -3, _b, 1)
+generator_384 = ellipticcurve.PointJacobi(
+ curve_384, _Gx, _Gy, 1, _r, generator=True)
+
+# NIST Curve P-521:
+_p = 6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151
+_r = 6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449
+# s = 0xd09e8800291cb85396cc6717393284aaa0da64baL
+# c = 0x0b48bfa5f420a34949539d2bdfc264eeeeb077688e44fbf0ad8f6d0edb37bd6b533281000518e19f1b9ffbe0fe9ed8a3c2200b8f875e523868c70c1e5bf55bad637L
+_b = 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00
+_Gx = 0xc6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66
+_Gy = 0x11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650
+
+curve_521 = ellipticcurve.CurveFp(_p, -3, _b, 1)
+generator_521 = ellipticcurve.PointJacobi(
+ curve_521, _Gx, _Gy, 1, _r, generator=True)
+
+# Certicom secp256-k1
+_a = 0x0000000000000000000000000000000000000000000000000000000000000000
+_b = 0x0000000000000000000000000000000000000000000000000000000000000007
+_p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
+_Gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
+_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
+_r = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
+
+curve_secp256k1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
+generator_secp256k1 = ellipticcurve.PointJacobi(
+ curve_secp256k1, _Gx, _Gy, 1, _r, generator=True)
+
+# Brainpool P-160-r1
+_a = 0x340E7BE2A280EB74E2BE61BADA745D97E8F7C300
+_b = 0x1E589A8595423412134FAA2DBDEC95C8D8675E58
+_p = 0xE95E4A5F737059DC60DFC7AD95B3D8139515620F
+_Gx = 0xBED5AF16EA3F6A4F62938C4631EB5AF7BDBCDBC3
+_Gy = 0x1667CB477A1A8EC338F94741669C976316DA6321
+_q = 0xE95E4A5F737059DC60DF5991D45029409E60FC09
+
+curve_brainpoolp160r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
+generator_brainpoolp160r1 = ellipticcurve.PointJacobi(
+ curve_brainpoolp160r1, _Gx, _Gy, 1, _q, generator=True)
+
+# Brainpool P-192-r1
+_a = 0x6A91174076B1E0E19C39C031FE8685C1CAE040E5C69A28EF
+_b = 0x469A28EF7C28CCA3DC721D044F4496BCCA7EF4146FBF25C9
+_p = 0xC302F41D932A36CDA7A3463093D18DB78FCE476DE1A86297
+_Gx = 0xC0A0647EAAB6A48753B033C56CB0F0900A2F5C4853375FD6
+_Gy = 0x14B690866ABD5BB88B5F4828C1490002E6773FA2FA299B8F
+_q = 0xC302F41D932A36CDA7A3462F9E9E916B5BE8F1029AC4ACC1
+
+curve_brainpoolp192r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
+generator_brainpoolp192r1 = ellipticcurve.PointJacobi(
+ curve_brainpoolp192r1, _Gx, _Gy, 1, _q, generator=True)
+
+# Brainpool P-224-r1
+_a = 0x68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
+_b = 0x2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B
+_p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF
+_Gx = 0x0D9029AD2C7E5CF4340823B2A87DC68C9E4CE3174C1E6EFDEE12C07D
+_Gy = 0x58AA56F772C0726F24C6B89E4ECDAC24354B9E99CAA3F6D3761402CD
+_q = 0xD7C134AA264366862A18302575D0FB98D116BC4B6DDEBCA3A5A7939F
+
+curve_brainpoolp224r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
+generator_brainpoolp224r1 = ellipticcurve.PointJacobi(
+ curve_brainpoolp224r1, _Gx, _Gy, 1, _q, generator=True)
+
+# Brainpool P-256-r1
+_a = 0x7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9
+_b = 0x26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6
+_p = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377
+_Gx = 0x8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262
+_Gy = 0x547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997
+_q = 0xA9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7
+
+curve_brainpoolp256r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
+generator_brainpoolp256r1 = ellipticcurve.PointJacobi(
+ curve_brainpoolp256r1, _Gx, _Gy, 1, _q, generator=True)
+
+# Brainpool P-320-r1
+_a = 0x3EE30B568FBAB0F883CCEBD46D3F3BB8A2A73513F5EB79DA66190EB085FFA9F492F375A97D860EB4
+_b = 0x520883949DFDBC42D3AD198640688A6FE13F41349554B49ACC31DCCD884539816F5EB4AC8FB1F1A6
+_p = 0xD35E472036BC4FB7E13C785ED201E065F98FCFA6F6F40DEF4F92B9EC7893EC28FCD412B1F1B32E27
+_Gx = 0x43BD7E9AFB53D8B85289BCC48EE5BFE6F20137D10A087EB6E7871E2A10A599C710AF8D0D39E20611
+_Gy = 0x14FDD05545EC1CC8AB4093247F77275E0743FFED117182EAA9C77877AAAC6AC7D35245D1692E8EE1
+_q = 0xD35E472036BC4FB7E13C785ED201E065F98FCFA5B68F12A32D482EC7EE8658E98691555B44C59311
+
+curve_brainpoolp320r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
+generator_brainpoolp320r1 = ellipticcurve.PointJacobi(
+ curve_brainpoolp320r1, _Gx, _Gy, 1, _q, generator=True)
+
+# Brainpool P-384-r1
+_a = 0x7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F90F8AA5814A503AD4EB04A8C7DD22CE2826
+_b = 0x04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62D57CB4390295DBC9943AB78696FA504C11
+_p = 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB71123ACD3A729901D1A71874700133107EC53
+_Gx = 0x1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10E8E826E03436D646AAEF87B2E247D4AF1E
+_Gy = 0x8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129280E4646217791811142820341263C5315
+_q = 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A7CF3AB6AF6B7FC3103B883202E9046565
+
+curve_brainpoolp384r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
+generator_brainpoolp384r1 = ellipticcurve.PointJacobi(
+ curve_brainpoolp384r1, _Gx, _Gy, 1, _q, generator=True)
+
+# Brainpool P-512-r1
+_a = 0x7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA
+_b = 0x3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723
+_p = 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3
+_Gx = 0x81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D0098EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822
+_Gy = 0x7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F8111B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892
+_q = 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA70330870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069
+
+curve_brainpoolp512r1 = ellipticcurve.CurveFp(_p, _a, _b, 1)
+generator_brainpoolp512r1 = ellipticcurve.PointJacobi(
+ curve_brainpoolp512r1, _Gx, _Gy, 1, _q, generator=True)