diff options
Diffstat (limited to 'freezed_deps/ecdsa-0.15.dist-info/METADATA')
-rw-r--r-- | freezed_deps/ecdsa-0.15.dist-info/METADATA | 625 |
1 files changed, 0 insertions, 625 deletions
diff --git a/freezed_deps/ecdsa-0.15.dist-info/METADATA b/freezed_deps/ecdsa-0.15.dist-info/METADATA deleted file mode 100644 index 6e8a2ef..0000000 --- a/freezed_deps/ecdsa-0.15.dist-info/METADATA +++ /dev/null @@ -1,625 +0,0 @@ -Metadata-Version: 2.1 -Name: ecdsa -Version: 0.15 -Summary: ECDSA cryptographic signature library (pure python) -Home-page: http://github.com/warner/python-ecdsa -Author: Brian Warner -Author-email: [email protected] -License: MIT -Platform: UNKNOWN -Classifier: Programming Language :: Python -Classifier: Programming Language :: Python :: 2 -Classifier: Programming Language :: Python :: 2.6 -Classifier: Programming Language :: Python :: 2.7 -Classifier: Programming Language :: Python :: 3 -Classifier: Programming Language :: Python :: 3.3 -Classifier: Programming Language :: Python :: 3.4 -Classifier: Programming Language :: Python :: 3.5 -Classifier: Programming Language :: Python :: 3.6 -Classifier: Programming Language :: Python :: 3.7 -Classifier: Programming Language :: Python :: 3.8 -Requires-Python: >=2.6, !=3.0.*, !=3.1.*, !=3.2.* -Description-Content-Type: text/markdown -Requires-Dist: six (>=1.9.0) -Provides-Extra: gmpy -Requires-Dist: gmpy ; extra == 'gmpy' -Provides-Extra: gmpy2 -Requires-Dist: gmpy2 ; extra == 'gmpy2' - -# Pure-Python ECDSA - -[![build status](https://travis-ci.org/warner/python-ecdsa.png)](http://travis-ci.org/warner/python-ecdsa) -[![Coverage Status](https://coveralls.io/repos/warner/python-ecdsa/badge.svg)](https://coveralls.io/r/warner/python-ecdsa) -[![condition coverage](https://img.shields.io/badge/condition%20coverage-81%25-yellow)](https://travis-ci.org/warner/python-ecdsa/jobs/626479178#L776) -[![Latest Version](https://img.shields.io/pypi/v/ecdsa.svg?style=flat)](https://pypi.python.org/pypi/ecdsa/) - - -This is an easy-to-use implementation of ECDSA cryptography (Elliptic Curve -Digital Signature Algorithm), implemented purely in Python, released under -the MIT license. With this library, you can quickly create keypairs (signing -key and verifying key), sign messages, and verify the signatures. The keys -and signatures are very short, making them easy to handle and incorporate -into other protocols. - -## Features - -This library provides key generation, signing, and verifying, for five -popular NIST "Suite B" GF(p) (_prime field_) curves, with key lengths of 192, -224, 256, 384, and 521 bits. The "short names" for these curves, as known by -the OpenSSL tool (`openssl ecparam -list_curves`), are: `prime192v1`, -`secp224r1`, `prime256v1`, `secp384r1`, and `secp521r1`. It includes the -256-bit curve `secp256k1` used by Bitcoin. There is also support for the -regular (non-twisted) variants of Brainpool curves from 160 to 512 bits. The -"short names" of those curves are: `brainpoolP160r1`, `brainpoolP192r1`, -`brainpoolP224r1`, `brainpoolP256r1`, `brainpoolP320r1`, `brainpoolP384r1`, -`brainpoolP512r1`. -No other curves are included, but it is not too hard to add support for more -curves over prime fields. - -## Dependencies - -This library uses only Python and the 'six' package. It is compatible with -Python 2.6, 2.7 and 3.3+. It also supports execution on the alternative -implementations like pypy and pypy3. - -If `gmpy2` or `gmpy` is installed, they will be used for faster arithmetic. -Either of them can be installed after this library is installed, -`python-ecdsa` will detect their presence on start-up and use them -automatically. - -To run the OpenSSL compatibility tests, the 'openssl' tool must be in your -`PATH`. This release has been tested successfully against OpenSSL 0.9.8o, -1.0.0a, 1.0.2f and 1.1.1d (among others). - - -## Installation - -This library is available on PyPI, it's recommended to install it using `pip`: - -``` -pip install ecdsa -``` - -In case higher performance is wanted and using native code is not a problem, -it's possible to specify installation together with `gmpy2`: - -``` -pip install ecdsa[gmpy2] -``` - -or (slower, legacy option): -``` -pip install ecdsa[gmpy] -``` - -## Speed - -The following table shows how long this library takes to generate keypairs -(`keygen`), to sign data (`sign`), and to verify those signatures (`verify`). -All those values are in seconds. -For convenience, the inverses of those values are also provided: -how many keys per second can be generated (`keygen/s`), how many signatures -can be made per second (`sign/s`) and how many signatures can be verified -per second (`verify/s`). The size of raw signature (generally the smallest -way a signature can be encoded) is also provided in the `siglen` column. -Use `tox -e speed` to generate this table on your own computer. -On an Intel Core i7 4790K @ 4.0GHz I'm getting the following performance: - -``` - siglen keygen keygen/s sign sign/s verify verify/s - NIST192p: 48 0.00035s 2893.02 0.00038s 2620.53 0.00069s 1458.92 - NIST224p: 56 0.00043s 2307.11 0.00048s 2092.00 0.00088s 1131.33 - NIST256p: 64 0.00056s 1793.70 0.00061s 1639.87 0.00113s 883.79 - NIST384p: 96 0.00116s 864.33 0.00124s 806.29 0.00233s 429.87 - NIST521p: 132 0.00221s 452.16 0.00234s 427.31 0.00460s 217.19 - SECP256k1: 64 0.00056s 1772.65 0.00061s 1628.73 0.00110s 912.13 - BRAINPOOLP160r1: 40 0.00026s 3801.86 0.00029s 3401.11 0.00052s 1930.47 - BRAINPOOLP192r1: 48 0.00034s 2925.73 0.00038s 2634.34 0.00070s 1438.06 - BRAINPOOLP224r1: 56 0.00044s 2287.98 0.00048s 2083.87 0.00088s 1137.52 - BRAINPOOLP256r1: 64 0.00056s 1774.11 0.00061s 1628.25 0.00112s 890.71 - BRAINPOOLP320r1: 80 0.00081s 1238.18 0.00087s 1146.71 0.00151s 661.95 - BRAINPOOLP384r1: 96 0.00117s 855.47 0.00124s 804.56 0.00241s 414.83 - BRAINPOOLP512r1: 128 0.00223s 447.99 0.00234s 427.49 0.00437s 229.09 - - ecdh ecdh/s - NIST192p: 0.00110s 910.70 - NIST224p: 0.00143s 701.17 - NIST256p: 0.00178s 560.44 - NIST384p: 0.00383s 261.03 - NIST521p: 0.00745s 134.23 - SECP256k1: 0.00168s 596.23 - BRAINPOOLP160r1: 0.00085s 1174.02 - BRAINPOOLP192r1: 0.00113s 883.47 - BRAINPOOLP224r1: 0.00145s 687.82 - BRAINPOOLP256r1: 0.00195s 514.03 - BRAINPOOLP320r1: 0.00277s 360.80 - BRAINPOOLP384r1: 0.00412s 242.58 - BRAINPOOLP512r1: 0.00787s 127.12 -``` - -To test performance with `gmpy2` loaded, use `tox -e speedgmpy2`. -On the same machine I'm getting the following performance with `gmpy2`: -``` - siglen keygen keygen/s sign sign/s verify verify/s - NIST192p: 48 0.00017s 5945.50 0.00018s 5544.66 0.00033s 3002.54 - NIST224p: 56 0.00021s 4742.14 0.00022s 4463.52 0.00044s 2248.59 - NIST256p: 64 0.00024s 4155.73 0.00025s 3994.28 0.00047s 2105.34 - NIST384p: 96 0.00041s 2415.06 0.00043s 2316.41 0.00085s 1177.18 - NIST521p: 132 0.00072s 1391.14 0.00074s 1359.63 0.00140s 716.31 - SECP256k1: 64 0.00024s 4216.50 0.00025s 3994.52 0.00047s 2120.57 - BRAINPOOLP160r1: 40 0.00014s 7038.99 0.00015s 6501.55 0.00029s 3397.79 - BRAINPOOLP192r1: 48 0.00017s 5983.18 0.00018s 5626.08 0.00035s 2843.62 - BRAINPOOLP224r1: 56 0.00021s 4727.54 0.00022s 4464.86 0.00043s 2326.84 - BRAINPOOLP256r1: 64 0.00024s 4221.00 0.00025s 4010.26 0.00049s 2046.40 - BRAINPOOLP320r1: 80 0.00032s 3142.14 0.00033s 3009.15 0.00061s 1652.88 - BRAINPOOLP384r1: 96 0.00041s 2415.98 0.00043s 2340.35 0.00083s 1198.77 - BRAINPOOLP512r1: 128 0.00064s 1567.27 0.00066s 1526.33 0.00127s 788.51 - - ecdh ecdh/s - NIST192p: 0.00051s 1960.26 - NIST224p: 0.00067s 1502.97 - NIST256p: 0.00073s 1376.12 - NIST384p: 0.00132s 758.68 - NIST521p: 0.00231s 433.23 - SECP256k1: 0.00072s 1387.18 - BRAINPOOLP160r1: 0.00042s 2366.60 - BRAINPOOLP192r1: 0.00049s 2026.80 - BRAINPOOLP224r1: 0.00067s 1486.52 - BRAINPOOLP256r1: 0.00076s 1310.31 - BRAINPOOLP320r1: 0.00101s 986.16 - BRAINPOOLP384r1: 0.00131s 761.35 - BRAINPOOLP512r1: 0.00211s 473.30 -``` - -(there's also `gmpy` version, execute it using `tox -e speedgmpy`) - -For comparison, a highly optimised implementation (including curve-specific -assembly for some curves), like the one in OpenSSL 1.1.1d, provides following -performance numbers on the same machine. -Run `openssl speed ecdsa` and `openssl speed ecdh` to reproduce it: -``` - sign verify sign/s verify/s - 192 bits ecdsa (nistp192) 0.0002s 0.0002s 4785.6 5380.7 - 224 bits ecdsa (nistp224) 0.0000s 0.0001s 22475.6 9822.0 - 256 bits ecdsa (nistp256) 0.0000s 0.0001s 45069.6 14166.6 - 384 bits ecdsa (nistp384) 0.0008s 0.0006s 1265.6 1648.1 - 521 bits ecdsa (nistp521) 0.0003s 0.0005s 3753.1 1819.5 - 256 bits ecdsa (brainpoolP256r1) 0.0003s 0.0003s 2983.5 3333.2 - 384 bits ecdsa (brainpoolP384r1) 0.0008s 0.0007s 1258.8 1528.1 - 512 bits ecdsa (brainpoolP512r1) 0.0015s 0.0012s 675.1 860.1 - - op op/s - 192 bits ecdh (nistp192) 0.0002s 4853.4 - 224 bits ecdh (nistp224) 0.0001s 15252.1 - 256 bits ecdh (nistp256) 0.0001s 18436.3 - 384 bits ecdh (nistp384) 0.0008s 1292.7 - 521 bits ecdh (nistp521) 0.0003s 2884.7 - 256 bits ecdh (brainpoolP256r1) 0.0003s 3066.5 - 384 bits ecdh (brainpoolP384r1) 0.0008s 1298.0 - 512 bits ecdh (brainpoolP512r1) 0.0014s 694.8 -``` - -Keys and signature can be serialized in different ways (see Usage, below). -For a NIST192p key, the three basic representations require strings of the -following lengths (in bytes): - - to_string: signkey= 24, verifykey= 48, signature=48 - compressed: signkey=n/a, verifykey= 25, signature=n/a - DER: signkey=106, verifykey= 80, signature=55 - PEM: signkey=278, verifykey=162, (no support for PEM signatures) - -## History - -In 2006, Peter Pearson announced his pure-python implementation of ECDSA in a -[message to sci.crypt][1], available from his [download site][2]. In 2010, -Brian Warner wrote a wrapper around this code, to make it a bit easier and -safer to use. Hubert Kario then included an implementation of elliptic curve -cryptography that uses Jacobian coordinates internally, improving performance -about 20-fold. You are looking at the README for this wrapper. - -[1]: http://www.derkeiler.com/Newsgroups/sci.crypt/2006-01/msg00651.html -[2]: http://webpages.charter.net/curryfans/peter/downloads.html - -## Testing - -To run the full test suite, do this: - - tox -e coverage - -On an Intel Core i7 4790K @ 4.0GHz, the tests take about 16 seconds to execute. -The test suite uses -[`hypothesis`](https://github.com/HypothesisWorks/hypothesis) so there is some -inherent variability in the test suite execution time. - -One part of `test_pyecdsa.py` checks compatibility with OpenSSL, by -running the "openssl" CLI tool, make sure it's in your `PATH` if you want -to test compatibility with it. - -## Security - -This library was not designed with security in mind. If you are processing -data that needs to be protected we suggest you use a quality wrapper around -OpenSSL. [pyca/cryptography](https://cryptography.io) is one example of such -a wrapper. The primary use-case of this library is as a portable library for -interoperability testing and as a teaching tool. - -**This library does not protect against side channel attacks.** - -Do not allow attackers to measure how long it takes you to generate a keypair -or sign a message. Do not allow attackers to run code on the same physical -machine when keypair generation or signing is taking place (this includes -virtual machines). Do not allow attackers to measure how much power your -computer uses while generating the keypair or signing a message. Do not allow -attackers to measure RF interference coming from your computer while generating -a keypair or signing a message. Note: just loading the private key will cause -keypair generation. Other operations or attack vectors may also be -vulnerable to attacks. **For a sophisticated attacker observing just one -operation with a private key will be sufficient to completely -reconstruct the private key**. - -Please also note that any Pure-python cryptographic library will be vulnerable -to the same side channel attacks. This is because Python does not provide -side-channel secure primitives (with the exception of -[`hmac.compare_digest()`][3]), making side-channel secure programming -impossible. - -This library depends upon a strong source of random numbers. Do not use it on -a system where `os.urandom()` does not provide cryptographically secure -random numbers. - -[3]: https://docs.python.org/3/library/hmac.html#hmac.compare_digest - -## Usage - -You start by creating a `SigningKey`. You can use this to sign data, by passing -in data as a byte string and getting back the signature (also a byte string). -You can also ask a `SigningKey` to give you the corresponding `VerifyingKey`. -The `VerifyingKey` can be used to verify a signature, by passing it both the -data string and the signature byte string: it either returns True or raises -`BadSignatureError`. - -```python -from ecdsa import SigningKey -sk = SigningKey.generate() # uses NIST192p -vk = sk.verifying_key -signature = sk.sign(b"message") -assert vk.verify(signature, b"message") -``` - -Each `SigningKey`/`VerifyingKey` is associated with a specific curve, like -NIST192p (the default one). Longer curves are more secure, but take longer to -use, and result in longer keys and signatures. - -```python -from ecdsa import SigningKey, NIST384p -sk = SigningKey.generate(curve=NIST384p) -vk = sk.verifying_key -signature = sk.sign(b"message") -assert vk.verify(signature, b"message") -``` - -The `SigningKey` can be serialized into several different formats: the shortest -is to call `s=sk.to_string()`, and then re-create it with -`SigningKey.from_string(s, curve)` . This short form does not record the -curve, so you must be sure to pass to `from_string()` the same curve you used -for the original key. The short form of a NIST192p-based signing key is just 24 -bytes long. If a point encoding is invalid or it does not lie on the specified -curve, `from_string()` will raise `MalformedPointError`. - -```python -from ecdsa import SigningKey, NIST384p -sk = SigningKey.generate(curve=NIST384p) -sk_string = sk.to_string() -sk2 = SigningKey.from_string(sk_string, curve=NIST384p) -print(sk_string.hex()) -print(sk2.to_string().hex()) -``` - -Note: while the methods are called `to_string()` the type they return is -actually `bytes`, the "string" part is leftover from Python 2. - -`sk.to_pem()` and `sk.to_der()` will serialize the signing key into the same -formats that OpenSSL uses. The PEM file looks like the familiar ASCII-armored -`"-----BEGIN EC PRIVATE KEY-----"` base64-encoded format, and the DER format -is a shorter binary form of the same data. -`SigningKey.from_pem()/.from_der()` will undo this serialization. These -formats include the curve name, so you do not need to pass in a curve -identifier to the deserializer. In case the file is malformed `from_der()` -and `from_pem()` will raise `UnexpectedDER` or` MalformedPointError`. - -```python -from ecdsa import SigningKey, NIST384p -sk = SigningKey.generate(curve=NIST384p) -sk_pem = sk.to_pem() -sk2 = SigningKey.from_pem(sk_pem) -# sk and sk2 are the same key -``` - -Likewise, the `VerifyingKey` can be serialized in the same way: -`vk.to_string()/VerifyingKey.from_string()`, `to_pem()/from_pem()`, and -`to_der()/from_der()`. The same `curve=` argument is needed for -`VerifyingKey.from_string()`. - -```python -from ecdsa import SigningKey, VerifyingKey, NIST384p -sk = SigningKey.generate(curve=NIST384p) -vk = sk.verifying_key -vk_string = vk.to_string() -vk2 = VerifyingKey.from_string(vk_string, curve=NIST384p) -# vk and vk2 are the same key - -from ecdsa import SigningKey, VerifyingKey, NIST384p -sk = SigningKey.generate(curve=NIST384p) -vk = sk.verifying_key -vk_pem = vk.to_pem() -vk2 = VerifyingKey.from_pem(vk_pem) -# vk and vk2 are the same key -``` - -There are a couple of different ways to compute a signature. Fundamentally, -ECDSA takes a number that represents the data being signed, and returns a -pair of numbers that represent the signature. The `hashfunc=` argument to -`sk.sign()` and `vk.verify()` is used to turn an arbitrary string into -fixed-length digest, which is then turned into a number that ECDSA can sign, -and both sign and verify must use the same approach. The default value is -`hashlib.sha1`, but if you use NIST256p or a longer curve, you can use -`hashlib.sha256` instead. - -There are also multiple ways to represent a signature. The default -`sk.sign()` and `vk.verify()` methods present it as a short string, for -simplicity and minimal overhead. To use a different scheme, use the -`sk.sign(sigencode=)` and `vk.verify(sigdecode=)` arguments. There are helper -functions in the `ecdsa.util` module that can be useful here. - -It is also possible to create a `SigningKey` from a "seed", which is -deterministic. This can be used in protocols where you want to derive -consistent signing keys from some other secret, for example when you want -three separate keys and only want to store a single master secret. You should -start with a uniformly-distributed unguessable seed with about `curve.baselen` -bytes of entropy, and then use one of the helper functions in `ecdsa.util` to -convert it into an integer in the correct range, and then finally pass it -into `SigningKey.from_secret_exponent()`, like this: - -```python -import os -from ecdsa import NIST384p, SigningKey -from ecdsa.util import randrange_from_seed__trytryagain - -def make_key(seed): - secexp = randrange_from_seed__trytryagain(seed, NIST384p.order) - return SigningKey.from_secret_exponent(secexp, curve=NIST384p) - -seed = os.urandom(NIST384p.baselen) # or other starting point -sk1a = make_key(seed) -sk1b = make_key(seed) -# note: sk1a and sk1b are the same key -assert sk1a.to_string() == sk1b.to_string() -sk2 = make_key(b"2-"+seed) # different key -assert sk1a.to_string() != sk2.to_string() -``` - -In case the application will verify a lot of signatures made with a single -key, it's possible to precompute some of the internal values to make -signature verification significantly faster. The break-even point occurs at -about 100 signatures verified. - -To perform precomputation, you can call the `precompute()` method -on `VerifyingKey` instance: -```python -from ecdsa import SigningKey, NIST384p -sk = SigningKey.generate(curve=NIST384p) -vk = sk.verifying_key -vk.precompute() -signature = sk.sign(b"message") -assert vk.verify(signature, b"message") -``` - -Once `precompute()` was called, all signature verifications with this key will -be faster to execute. - -## OpenSSL Compatibility - -To produce signatures that can be verified by OpenSSL tools, or to verify -signatures that were produced by those tools, use: - -```python -# openssl ecparam -name prime256v1 -genkey -out sk.pem -# openssl ec -in sk.pem -pubout -out vk.pem -# echo "data for signing" > data -# openssl dgst -sha256 -sign sk.pem -out data.sig data -# openssl dgst -sha256 -verify vk.pem -signature data.sig data -# openssl dgst -sha256 -prverify sk.pem -signature data.sig data - -import hashlib -from ecdsa import SigningKey, VerifyingKey -from ecdsa.util import sigencode_der, sigdecode_der - -with open("vk.pem") as f: - vk = VerifyingKey.from_pem(f.read()) - -with open("data", "rb") as f: - data = f.read() - -with open("data.sig", "rb") as f: - signature = f.read() - -assert vk.verify(signature, data, hashlib.sha256, sigdecode=sigdecode_der) - -with open("sk.pem") as f: - sk = SigningKey.from_pem(f.read(), hashlib.sha256) - -new_signature = sk.sign_deterministic(data, sigencode=sigencode_der) - -with open("data.sig2", "wb") as f: - f.write(new_signature) - -# openssl dgst -sha256 -verify vk.pem -signature data.sig2 data -``` - -Note: if compatibility with OpenSSL 1.0.0 or earlier is necessary, the -`sigencode_string` and `sigdecode_string` from `ecdsa.util` can be used for -respectively writing and reading the signatures. - -The keys also can be written in format that openssl can handle: - -```python -from ecdsa import SigningKey, VerifyingKey - -with open("sk.pem") as f: - sk = SigningKey.from_pem(f.read()) -with open("sk.pem", "wb") as f: - f.write(sk.to_pem()) - -with open("vk.pem") as f: - vk = VerifyingKey.from_pem(f.read()) -with open("vk.pem", "wb") as f: - f.write(vk.to_pem()) -``` - -## Entropy - -Creating a signing key with `SigningKey.generate()` requires some form of -entropy (as opposed to -`from_secret_exponent`/`from_string`/`from_der`/`from_pem`, -which are deterministic and do not require an entropy source). The default -source is `os.urandom()`, but you can pass any other function that behaves -like `os.urandom` as the `entropy=` argument to do something different. This -may be useful in unit tests, where you want to achieve repeatable results. The -`ecdsa.util.PRNG` utility is handy here: it takes a seed and produces a strong -pseudo-random stream from it: - -```python -from ecdsa.util import PRNG -from ecdsa import SigningKey -rng1 = PRNG(b"seed") -sk1 = SigningKey.generate(entropy=rng1) -rng2 = PRNG(b"seed") -sk2 = SigningKey.generate(entropy=rng2) -# sk1 and sk2 are the same key -``` - -Likewise, ECDSA signature generation requires a random number, and each -signature must use a different one (using the same number twice will -immediately reveal the private signing key). The `sk.sign()` method takes an -`entropy=` argument which behaves the same as `SigningKey.generate(entropy=)`. - -## Deterministic Signatures - -If you call `SigningKey.sign_deterministic(data)` instead of `.sign(data)`, -the code will generate a deterministic signature instead of a random one. -This uses the algorithm from RFC6979 to safely generate a unique `k` value, -derived from the private key and the message being signed. Each time you sign -the same message with the same key, you will get the same signature (using -the same `k`). - -This may become the default in a future version, as it is not vulnerable to -failures of the entropy source. - -## Examples - -Create a NIST192p keypair and immediately save both to disk: - -```python -from ecdsa import SigningKey -sk = SigningKey.generate() -vk = sk.verifying_key -with open("private.pem", "wb") as f: - f.write(sk.to_pem()) -with open("public.pem", "wb") as f: - f.write(vk.to_pem()) -``` - -Load a signing key from disk, use it to sign a message (using SHA-1), and write -the signature to disk: - -```python -from ecdsa import SigningKey -with open("private.pem") as f: - sk = SigningKey.from_pem(f.read()) -with open("message", "rb") as f: - message = f.read() -sig = sk.sign(message) -with open("signature", "wb") as f: - f.write(sig) -``` - -Load the verifying key, message, and signature from disk, and verify the -signature (assume SHA-1 hash): - -```python -from ecdsa import VerifyingKey, BadSignatureError -vk = VerifyingKey.from_pem(open("public.pem").read()) -with open("message", "rb") as f: - message = f.read() -with open("signature", "rb") as f: - sig = f.read() -try: - vk.verify(sig, message) - print "good signature" -except BadSignatureError: - print "BAD SIGNATURE" -``` - -Create a NIST521p keypair: - -```python -from ecdsa import SigningKey, NIST521p -sk = SigningKey.generate(curve=NIST521p) -vk = sk.verifying_key -``` - -Create three independent signing keys from a master seed: - -```python -from ecdsa import NIST192p, SigningKey -from ecdsa.util import randrange_from_seed__trytryagain - -def make_key_from_seed(seed, curve=NIST192p): - secexp = randrange_from_seed__trytryagain(seed, curve.order) - return SigningKey.from_secret_exponent(secexp, curve) - -sk1 = make_key_from_seed("1:%s" % seed) -sk2 = make_key_from_seed("2:%s" % seed) -sk3 = make_key_from_seed("3:%s" % seed) -``` - -Load a verifying key from disk and print it using hex encoding in -uncompressed and compressed format (defined in X9.62 and SEC1 standards): - -```python -from ecdsa import VerifyingKey - -with open("public.pem") as f: - vk = VerifyingKey.from_pem(f.read()) - -print("uncompressed: {0}".format(vk.to_string("uncompressed").hex())) -print("compressed: {0}".format(vk.to_string("compressed").hex())) -``` - -Load a verifying key from a hex string from compressed format, output -uncompressed: - -```python -from ecdsa import VerifyingKey, NIST256p - -comp_str = '022799c0d0ee09772fdd337d4f28dc155581951d07082fb19a38aa396b67e77759' -vk = VerifyingKey.from_string(bytearray.fromhex(comp_str), curve=NIST256p) -print(vk.to_string("uncompressed").hex()) -``` - -ECDH key exchange with remote party - -```python -from ecdsa import ECDH, NIST256p - -ecdh = ECDH(curve=NIST256p) -ecdh.generate_private_key() -local_public_key = ecdh.get_public_key() -#send `local_public_key` to remote party and receive `remote_public_key` from remote party -with open("remote_public_key.pem") as e: - remote_public_key = e.read() -ecdh.load_received_public_key_pem(remote_public_key) -secret = ecdh.generate_sharedsecret_bytes() -``` - - |