diff options
Diffstat (limited to '54a-60')
-rw-r--r-- | 54a-60/54a.hs | 3 | ||||
-rw-r--r-- | 54a-60/55.hs | 13 | ||||
-rw-r--r-- | 54a-60/56.hs | 11 | ||||
-rw-r--r-- | 54a-60/57.hs | 23 | ||||
-rw-r--r-- | 54a-60/58.hs | 23 | ||||
-rw-r--r-- | 54a-60/59.hs | 11 | ||||
-rw-r--r-- | 54a-60/60.hs | 25 |
7 files changed, 109 insertions, 0 deletions
diff --git a/54a-60/54a.hs b/54a-60/54a.hs new file mode 100644 index 0000000..9b39576 --- /dev/null +++ b/54a-60/54a.hs @@ -0,0 +1,3 @@ +data Tree a = Empty | Branch a (Tree a) (Tree a) deriving (Show, Eq) + +-- Haskell is type-safe, so there is no solution. diff --git a/54a-60/55.hs b/54a-60/55.hs new file mode 100644 index 0000000..5cc7b91 --- /dev/null +++ b/54a-60/55.hs @@ -0,0 +1,13 @@ +data Tree a = Empty | Branch a (Tree a) (Tree a) deriving (Show, Eq) + +cbalTree :: Int -> [Tree Char] + +cbalTree 0 = [Empty] +cbalTree x + | even n = [Branch 'x' lt rt | let st = cbalTree ln, lt <- st, rt <- st] + | otherwise = let st1 = cbalTree ln + st2 = cbalTree (n - ln) in + [Branch 'x' lt rt | lt <- st1, rt <- st2] ++ + [Branch 'x' lt rt | lt <- st2, rt <- st1] + where ln = n `div` 2 + n = x - 1 diff --git a/54a-60/56.hs b/54a-60/56.hs new file mode 100644 index 0000000..7bdc5dd --- /dev/null +++ b/54a-60/56.hs @@ -0,0 +1,11 @@ +data Tree a = Empty | Branch a (Tree a) (Tree a) deriving (Show, Eq) + +symmetric :: (Eq a) => Tree a -> Bool +mirror :: (Eq a) => Tree a -> Tree a -> Bool + +mirror Empty Empty = True +mirror (Branch _ a b) (Branch _ l r) = mirror a r && mirror b l +mirror _ _ = False + +symmetric Empty = True +symmetric (Branch _ l r) = mirror l r diff --git a/54a-60/57.hs b/54a-60/57.hs new file mode 100644 index 0000000..efe8588 --- /dev/null +++ b/54a-60/57.hs @@ -0,0 +1,23 @@ +import Data.List (foldl') + +data Tree a = Empty | Branch a (Tree a) (Tree a) deriving (Show, Eq) + +symmetric :: (Eq a) => Tree a -> Bool +mirror :: (Eq a) => Tree a -> Tree a -> Bool + +mirror Empty Empty = True +mirror (Branch _ a b) (Branch _ l r) = mirror a r && mirror b l +mirror _ _ = False + +symmetric Empty = True +symmetric (Branch _ l r) = mirror l r + +construct :: [Int] -> Tree Int +addNode :: Tree Int -> Int -> Tree Int + +addNode Empty n = Branch n Empty Empty -- create node +addNode (Branch x l r) n + | n <= x = Branch x (addNode l n) r + | otherwise = Branch x l (addNode r n) + +construct l = foldl' (\acc n -> addNode acc n) Empty l diff --git a/54a-60/58.hs b/54a-60/58.hs new file mode 100644 index 0000000..896889f --- /dev/null +++ b/54a-60/58.hs @@ -0,0 +1,23 @@ +data Tree a = Empty | Branch a (Tree a) (Tree a) deriving (Show, Eq) + +cbalTree :: Int -> [Tree Char] + +cbalTree 0 = [Empty] +cbalTree x + | even n = [Branch 'x' lt rt | let st = cbalTree ln, lt <- st, rt <- st] + | otherwise = let st1 = cbalTree ln + st2 = cbalTree (n - ln) in + [Branch 'x' lt rt | lt <- st1, rt <- st2] ++ + [Branch 'x' lt rt | lt <- st2, rt <- st1] + where ln = n `div` 2 + n = x - 1 + +symCbalTrees :: Int -> [Tree Char] + +symCbalTrees x + | even n = [Branch 'x' st $ reverseTree st | st <- cbalTree ln] + | otherwise = [] + where ln = n `div` 2 + n = x - 1 + reverseTree Empty = Empty + reverseTree (Branch x l r) = Branch x (reverseTree r) (reverseTree l) diff --git a/54a-60/59.hs b/54a-60/59.hs new file mode 100644 index 0000000..0faecd6 --- /dev/null +++ b/54a-60/59.hs @@ -0,0 +1,11 @@ +data Tree a = Empty | Branch a (Tree a) (Tree a) deriving (Show, Eq) + +hbalTree :: a -> Int -> [Tree a] + +hbalTree x 0 = [Empty] +hbalTree x 1 = [Branch x Empty Empty] +hbalTree x h = + [Branch x lt rt + | (h1, h2) <- [(h-2, h-1), (h-1, h-2), (h-1, h-1)] + , lt <- hbalTree x h1 + , rt <- hbalTree x h2] diff --git a/54a-60/60.hs b/54a-60/60.hs new file mode 100644 index 0000000..3facc1f --- /dev/null +++ b/54a-60/60.hs @@ -0,0 +1,25 @@ +data Tree a = Empty | Branch a (Tree a) (Tree a) deriving (Show, Eq) + +hbalTreeNodes :: a -> Int -> [Tree a] + +fibs = 0 : 1 : zipWith (+) fibs (tail fibs) + +-- The minimum height for a balanced tree +minHeight n = ceiling $ logBase 2 $ fromIntegral (n + 1) + +-- The minimum node for a height +minNode h = fibs !! (h + 2) - 1 + +maxNode h = 2 ^ h - 1 +maxHeight n = (length $ takeWhile (<= n + 1) fibs) - 3 + + +hbalTreeNodes x n = [t | h' <- [minHeight n..maxHeight n], t <- build n h'] + where build _ 0 = [Empty] + build _ 1 = [Branch x Empty Empty] + build n h = let n' = n - 1 in + [Branch x lt rt | (h1, h2) <- [(h-2, h-1), (h-1, h-2), (h-1, h-1)] + , n1 <- [max (n' - maxNode h2) $ minNode h1.. + min (n' - minNode h2) $ maxNode h1] + , lt <- build n1 h1 + , rt <- build (n' - n1) h2] |