1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
#[cfg(test)]
#[allow(dead_code)]
extern crate growthring;
use growthring::wal::{WALFile, WALStore, WALPos, WALBytes};
use indexmap::{IndexMap, map::Entry};
use rand::Rng;
use std::collections::{HashMap, hash_map};
use std::cell::RefCell;
use std::rc::Rc;
use std::convert::TryInto;
use std::collections::VecDeque;
thread_local! {
//pub static RNG: RefCell<rand::rngs::StdRng> = RefCell::new(<rand::rngs::StdRng as rand::SeedableRng>::from_seed([0; 32]));
pub static RNG: RefCell<rand::rngs::ThreadRng> = RefCell::new(rand::thread_rng());
}
pub fn gen_rand_letters(i: usize) -> String {
//let mut rng = rand::thread_rng();
RNG.with(|rng| {
(0..i).map(|_| (rng.borrow_mut().gen_range(0, 26) + 'a' as u8) as char).collect()
})
}
struct FileContentEmul(RefCell<Vec<u8>>);
impl FileContentEmul {
pub fn new() -> Self { FileContentEmul(RefCell::new(Vec::new())) }
}
impl std::ops::Deref for FileContentEmul {
type Target = RefCell<Vec<u8>>;
fn deref(&self) -> &Self::Target {&self.0}
}
pub trait FailGen {
fn next_fail(&self) -> bool;
}
/// Emulate the a virtual file handle.
pub struct WALFileEmul<G: FailGen> {
file: Rc<FileContentEmul>,
fgen: Rc<G>
}
impl<G: FailGen> WALFile for WALFileEmul<G> {
fn allocate(&self, offset: WALPos, length: usize) -> Result<(), ()> {
if self.fgen.next_fail() { return Err(()) }
let offset = offset as usize;
if offset + length > self.file.borrow().len() {
self.file.borrow_mut().resize(offset + length, 0)
}
for v in &mut self.file.borrow_mut()[offset..offset + length] { *v = 0 }
Ok(())
}
fn truncate(&self, length: usize) -> Result<(), ()> {
if self.fgen.next_fail() { return Err(()) }
self.file.borrow_mut().resize(length, 0);
Ok(())
}
fn write(&self, offset: WALPos, data: WALBytes) -> Result<(), ()> {
if self.fgen.next_fail() { return Err(()) }
let offset = offset as usize;
&self.file.borrow_mut()[offset..offset + data.len()].copy_from_slice(&data);
Ok(())
}
fn read(&self, offset: WALPos, length: usize) -> Result<Option<WALBytes>, ()> {
if self.fgen.next_fail() { return Err(()) }
let offset = offset as usize;
let file = self.file.borrow();
if offset + length > file.len() { Ok(None) }
else {
Ok(Some((&file[offset..offset + length]).to_vec().into_boxed_slice()))
}
}
}
pub struct WALStoreEmulState {
files: HashMap<String, Rc<FileContentEmul>>,
}
impl WALStoreEmulState {
pub fn new() -> Self { WALStoreEmulState { files: HashMap::new() } }
}
/// Emulate the persistent storage state.
pub struct WALStoreEmul<'a, G: FailGen> {
state: &'a mut WALStoreEmulState,
fgen: Rc<G>
}
impl<'a, G: FailGen> WALStoreEmul<'a, G> {
pub fn new(state: &'a mut WALStoreEmulState, fail_gen: G) -> Self {
WALStoreEmul { state, fgen: Rc::new(fail_gen) }
}
}
impl<'a, G: 'static + FailGen> WALStore for WALStoreEmul<'a, G> {
type FileNameIter = std::vec::IntoIter<String>;
fn open_file(&mut self, filename: &str, touch: bool) -> Result<Box<dyn WALFile>, ()> {
if self.fgen.next_fail() { return Err(()) }
match self.state.files.entry(filename.to_string()) {
hash_map::Entry::Occupied(e) => Ok(Box::new(WALFileEmul {
file: e.get().clone(),
fgen: self.fgen.clone()
})),
hash_map::Entry::Vacant(e) => if touch {
Ok(Box::new(WALFileEmul {
file: e.insert(Rc::new(FileContentEmul::new())).clone(),
fgen: self.fgen.clone()
}))
} else {
Err(())
}
}
}
fn remove_file(&mut self, filename: &str) -> Result<(), ()> {
if self.fgen.next_fail() { return Err(()) }
self.state.files.remove(filename).ok_or(()).and_then(|_| Ok(()))
}
fn enumerate_files(&self) -> Result<Self::FileNameIter, ()> {
if self.fgen.next_fail() { return Err(()) }
let mut logfiles = Vec::new();
for (fname, _) in self.state.files.iter() {
logfiles.push(fname.clone())
}
Ok(logfiles.into_iter())
}
fn apply_payload(&mut self, payload: WALBytes) -> Result<(), ()> {
if self.fgen.next_fail() { return Err(()) }
println!("apply_payload(payload={})", std::str::from_utf8(&payload).unwrap());
Ok(())
}
}
pub struct SingleFailGen {
cnt: std::cell::Cell<usize>,
fail_point: usize
}
impl SingleFailGen {
pub fn new(fail_point: usize) -> Self {
SingleFailGen {
cnt: std::cell::Cell::new(0),
fail_point
}
}
}
impl FailGen for SingleFailGen {
fn next_fail(&self) -> bool {
let c = self.cnt.get();
self.cnt.set(c + 1);
c == self.fail_point
}
}
pub struct ZeroFailGen;
impl FailGen for ZeroFailGen {
fn next_fail(&self) -> bool { false }
}
/// An ordered list of intervals: `(begin, end, color)*`.
pub struct PaintStrokes(Vec<(u32, u32, u32)>);
impl PaintStrokes {
pub fn new() -> Self { PaintStrokes(Vec::new()) }
pub fn to_bytes(&self) -> WALBytes {
let mut res: Vec<u8> = Vec::new();
let is = std::mem::size_of::<u32>();
let len = self.0.len() as u32;
res.resize(is * (1 + 3 * self.0.len()), 0);
let mut rs = &mut res[..];
&mut rs[..is].copy_from_slice(&len.to_le_bytes());
rs = &mut rs[is..];
for (s, e, c) in self.0.iter() {
&mut rs[..is].copy_from_slice(&s.to_le_bytes());
&mut rs[is..is * 2].copy_from_slice(&e.to_le_bytes());
&mut rs[is * 2..is * 3].copy_from_slice(&c.to_le_bytes());
rs = &mut rs[is * 3..];
}
res.into_boxed_slice()
}
pub fn from_bytes(raw: &[u8]) -> Self {
assert!(raw.len() > 4);
assert!(raw.len() & 3 == 0);
let is = std::mem::size_of::<u32>();
let (len_raw, mut rest) = raw.split_at(is);
let len = u32::from_le_bytes(len_raw.try_into().unwrap());
let mut res = Vec::new();
for _ in 0..len {
let (s_raw, rest1) = rest.split_at(is);
let (e_raw, rest2) = rest1.split_at(is);
let (c_raw, rest3) = rest2.split_at(is);
res.push((u32::from_le_bytes(s_raw.try_into().unwrap()),
u32::from_le_bytes(e_raw.try_into().unwrap()),
u32::from_le_bytes(c_raw.try_into().unwrap())));
rest = rest3
}
PaintStrokes(res)
}
pub fn stroke(&mut self, start: u32, end: u32, color: u32) {
self.0.push((start, end, color))
}
pub fn into_vec(self) -> Vec<(u32, u32, u32)> { self.0 }
}
#[test]
fn test_paint_strokes() {
let mut p = PaintStrokes::new();
for i in 0..3 {
p.stroke(i, i + 3, i + 10)
}
let pr = p.to_bytes();
for ((s, e, c), i) in PaintStrokes::from_bytes(&pr)
.into_vec().into_iter().zip(0..) {
assert_eq!(s, i);
assert_eq!(e, i + 3);
assert_eq!(c, i + 10);
}
}
pub struct Canvas {
waiting: HashMap<WALPos, usize>,
queue: IndexMap<u32, VecDeque<(u32, WALPos)>>,
canvas: Box<[u32]>
}
impl Canvas {
pub fn new(size: usize) -> Self {
let mut canvas = Vec::new();
// fill the backgroudn color 0
canvas.resize(size, 0);
let canvas = canvas.into_boxed_slice();
Canvas {
waiting: HashMap::new(),
queue: IndexMap::new(),
canvas
}
}
fn get_waiting(&mut self, sid: WALPos) -> &mut usize {
match self.waiting.entry(sid) {
hash_map::Entry::Occupied(e) => e.into_mut(),
hash_map::Entry::Vacant(e) => e.insert(0)
}
}
fn get_queued(&mut self, pos: u32) -> &mut VecDeque<(u32, WALPos)> {
match self.queue.entry(pos) {
Entry::Occupied(e) => e.into_mut(),
Entry::Vacant(e) => e.insert(VecDeque::new())
}
}
pub fn prepaint(&mut self, strokes: &PaintStrokes, sid: &WALPos) {
let sid = *sid;
let mut nwait = 0;
for (s, e, c) in strokes.0.iter() {
for i in *s..*e {
nwait += 1;
self.get_queued(i).push_back((*c, sid))
}
}
*self.get_waiting(sid) += nwait
}
// TODO: allow customized scheduler
/// Schedule to paint one position, randomly. It optionally returns a finished batch write
/// identified by its start position of WALRingId.
pub fn rand_paint<R: rand::Rng>(&mut self, rng: &mut R) -> (Option<WALPos>, u32) {
println!("{}", self.queue.len());
let idx = rng.gen_range(0, self.queue.len());
let (pos, _) = self.queue.get_index_mut(idx).unwrap();
let pos = *pos;
(self.paint(pos), pos)
}
pub fn paint(&mut self, pos: u32) -> Option<WALPos> {
let q = self.queue.get_mut(&pos).unwrap();
let (c, sid) = q.pop_front().unwrap();
if q.is_empty() { self.queue.remove(&pos); }
self.canvas[pos as usize] = c;
let cnt = self.waiting.get_mut(&sid).unwrap();
*cnt -= 1;
if *cnt == 0 {
Some(sid)
} else { None }
}
pub fn is_same(&self, other: &Canvas) -> bool {
self.canvas.cmp(&other.canvas) == std::cmp::Ordering::Equal
}
}
#[test]
fn test_canvas() {
let mut canvas1 = Canvas::new(10);
let mut canvas2 = Canvas::new(10);
let canvas3 = Canvas::new(11);
let mut s1 = PaintStrokes::new();
s1.stroke(0, 1, 1);
let mut s2 = PaintStrokes::new();
s2.stroke(1, 2, 2);
assert!(canvas1.is_same(&canvas2));
assert!(!canvas2.is_same(&canvas3));
canvas1.prepaint(&s1, &0);
canvas1.prepaint(&s2, &0);
canvas2.prepaint(&s1, &0);
canvas2.prepaint(&s2, &0);
assert!(canvas1.is_same(&canvas2));
RNG.with(|rng| canvas1.rand_paint(&mut *rng.borrow_mut()));
assert!(!canvas1.is_same(&canvas2));
RNG.with(|rng| canvas1.rand_paint(&mut *rng.borrow_mut()));
RNG.with(|rng| canvas2.rand_paint(&mut *rng.borrow_mut()));
RNG.with(|rng| canvas2.rand_paint(&mut *rng.borrow_mut()));
assert!(canvas1.is_same(&canvas2));
}
|