1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
// (c) 2019-2020, Ava Labs, Inc. All rights reserved.
// See the file LICENSE for licensing terms.
package evm
import (
"fmt"
"math/big"
"github.com/ava-labs/coreth/core/state"
"github.com/ava-labs/avalanchego/chains/atomic"
"github.com/ava-labs/avalanchego/database"
"github.com/ava-labs/avalanchego/ids"
"github.com/ava-labs/avalanchego/snow"
"github.com/ava-labs/avalanchego/utils/crypto"
safemath "github.com/ava-labs/avalanchego/utils/math"
"github.com/ava-labs/avalanchego/vms/components/avax"
"github.com/ava-labs/avalanchego/vms/secp256k1fx"
"github.com/ethereum/go-ethereum/log"
)
// UnsignedExportTx is an unsigned ExportTx
type UnsignedExportTx struct {
avax.Metadata
// true iff this transaction has already passed syntactic verification
syntacticallyVerified bool
// ID of the network on which this tx was issued
NetworkID uint32 `serialize:"true" json:"networkID"`
// ID of this blockchain.
BlockchainID ids.ID `serialize:"true" json:"blockchainID"`
// Which chain to send the funds to
DestinationChain ids.ID `serialize:"true" json:"destinationChain"`
// Inputs
Ins []EVMInput `serialize:"true" json:"inputs"`
// Outputs that are exported to the chain
ExportedOutputs []*avax.TransferableOutput `serialize:"true" json:"exportedOutputs"`
}
// InputUTXOs returns an empty set
func (tx *UnsignedExportTx) InputUTXOs() ids.Set { return ids.Set{} }
// Verify this transaction is well-formed
func (tx *UnsignedExportTx) Verify(
avmID ids.ID,
ctx *snow.Context,
feeAmount uint64,
feeAssetID ids.ID,
) error {
switch {
case tx == nil:
return errNilTx
case tx.syntacticallyVerified: // already passed syntactic verification
return nil
case tx.DestinationChain.IsZero():
return errWrongChainID
case !tx.DestinationChain.Equals(avmID):
return errWrongChainID
case len(tx.ExportedOutputs) == 0:
return errNoExportOutputs
case tx.NetworkID != ctx.NetworkID:
return errWrongNetworkID
case !ctx.ChainID.Equals(tx.BlockchainID):
return errWrongBlockchainID
}
for _, in := range tx.Ins {
if err := in.Verify(); err != nil {
return err
}
}
for _, out := range tx.ExportedOutputs {
if err := out.Verify(); err != nil {
return err
}
}
if !avax.IsSortedTransferableOutputs(tx.ExportedOutputs, Codec) {
return errOutputsNotSorted
}
tx.syntacticallyVerified = true
return nil
}
// SemanticVerify this transaction is valid.
func (tx *UnsignedExportTx) SemanticVerify(
vm *VM,
stx *Tx,
) TxError {
if err := tx.Verify(vm.ctx.XChainID, vm.ctx, vm.txFee, vm.ctx.AVAXAssetID); err != nil {
return permError{err}
}
f := crypto.FactorySECP256K1R{}
for i, cred := range stx.Creds {
if err := cred.Verify(); err != nil {
return permError{err}
}
pubKey, err := f.RecoverPublicKey(tx.UnsignedBytes(), cred.(*secp256k1fx.Credential).Sigs[0][:])
if err != nil {
return permError{err}
}
if tx.Ins[i].Address != PublicKeyToEthAddress(pubKey) {
return permError{errPublicKeySignatureMismatch}
}
}
// do flow-checking
fc := avax.NewFlowChecker()
fc.Produce(vm.ctx.AVAXAssetID, vm.txFee)
for _, out := range tx.ExportedOutputs {
fc.Produce(out.AssetID(), out.Output().Amount())
}
for _, in := range tx.Ins {
fc.Consume(in.AssetID, in.Amount)
}
if err := fc.Verify(); err != nil {
return permError{err}
}
// TODO: verify UTXO outputs via gRPC
return nil
}
// Accept this transaction.
func (tx *UnsignedExportTx) Accept(ctx *snow.Context, _ database.Batch) error {
txID := tx.ID()
elems := make([]*atomic.Element, len(tx.ExportedOutputs))
for i, out := range tx.ExportedOutputs {
utxo := &avax.UTXO{
UTXOID: avax.UTXOID{
TxID: txID,
OutputIndex: uint32(i),
},
Asset: avax.Asset{ID: out.AssetID()},
Out: out.Out,
}
utxoBytes, err := Codec.Marshal(utxo)
if err != nil {
return err
}
elem := &atomic.Element{
Key: utxo.InputID().Bytes(),
Value: utxoBytes,
}
if out, ok := utxo.Out.(avax.Addressable); ok {
elem.Traits = out.Addresses()
}
elems[i] = elem
}
return ctx.SharedMemory.Put(tx.DestinationChain, elems)
}
// Create a new transaction
func (vm *VM) newExportTx(
assetID ids.ID, // AssetID of the tokens to export
amount uint64, // Amount of tokens to export
chainID ids.ID, // Chain to send the UTXOs to
to ids.ShortID, // Address of chain recipient
keys []*crypto.PrivateKeySECP256K1R, // Pay the fee and provide the tokens
) (*Tx, error) {
if !vm.ctx.XChainID.Equals(chainID) {
return nil, errWrongChainID
}
var toBurn uint64
var err error
if assetID.Equals(vm.ctx.AVAXAssetID) {
toBurn, err = safemath.Add64(amount, vm.txFee)
if err != nil {
return nil, errOverflowExport
}
} else {
toBurn = vm.txFee
}
// burn AVAX
ins, signers, err := vm.GetSpendableCanonical(keys, vm.ctx.AVAXAssetID, toBurn)
if err != nil {
return nil, fmt.Errorf("couldn't generate tx inputs/outputs: %w", err)
}
// burn non-AVAX
if !assetID.Equals(vm.ctx.AVAXAssetID) {
ins2, signers2, err := vm.GetSpendableCanonical(keys, assetID, amount)
if err != nil {
return nil, fmt.Errorf("couldn't generate tx inputs/outputs: %w", err)
}
ins = append(ins, ins2...)
signers = append(signers, signers2...)
}
exportOuts := []*avax.TransferableOutput{{ // Exported to X-Chain
Asset: avax.Asset{ID: assetID},
Out: &secp256k1fx.TransferOutput{
Amt: amount,
OutputOwners: secp256k1fx.OutputOwners{
Locktime: 0,
Threshold: 1,
Addrs: []ids.ShortID{to},
},
},
}}
// Create the transaction
utx := &UnsignedExportTx{
NetworkID: vm.ctx.NetworkID,
BlockchainID: vm.ctx.ChainID,
DestinationChain: chainID,
Ins: ins,
ExportedOutputs: exportOuts,
}
tx := &Tx{UnsignedTx: utx}
if err := tx.Sign(vm.codec, signers); err != nil {
return nil, err
}
return tx, utx.Verify(vm.ctx.XChainID, vm.ctx, vm.txFee, vm.ctx.AVAXAssetID)
}
func (tx *UnsignedExportTx) EVMStateTransfer(vm *VM, state *state.StateDB) error {
addrs := map[[20]byte]uint64{}
for _, from := range tx.Ins {
log.Info("crosschain C->X", "addr", from.Address, "amount", from.Amount)
if from.AssetID.Equals(vm.ctx.AVAXAssetID) {
amount := new(big.Int).Mul(
new(big.Int).SetUint64(from.Amount), x2cRate)
if state.GetBalance(from.Address).Cmp(amount) < 0 {
return errInsufficientFunds
}
state.SubBalance(from.Address, amount)
} else {
amount := new(big.Int).SetUint64(from.Amount)
assetID := from.AssetID.Key()
if state.GetBalanceMultiCoin(from.Address, assetID).Cmp(amount) < 0 {
return errInsufficientFunds
}
state.SubBalanceMultiCoin(from.Address, assetID, amount)
}
if state.GetNonce(from.Address) != from.Nonce {
return errInvalidNonce
}
addrs[from.Address] = from.Nonce
}
for addr, nonce := range addrs {
state.SetNonce(addr, nonce+1)
}
return nil
}
|