1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
|
// Copyright 2018 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package core
import (
"runtime"
"github.com/ava-labs/coreth/core/types"
)
// senderCacher is a concurrent transaction sender recoverer and cacher.
var senderCacher = newTxSenderCacher(runtime.NumCPU())
// txSenderCacherRequest is a request for recovering transaction senders with a
// specific signature scheme and caching it into the transactions themselves.
//
// The inc field defines the number of transactions to skip after each recovery,
// which is used to feed the same underlying input array to different threads but
// ensure they process the early transactions fast.
type txSenderCacherRequest struct {
signer types.Signer
txs []*types.Transaction
inc int
}
// txSenderCacher is a helper structure to concurrently ecrecover transaction
// senders from digital signatures on background threads.
type txSenderCacher struct {
threads int
tasks chan *txSenderCacherRequest
}
// newTxSenderCacher creates a new transaction sender background cacher and starts
// as many processing goroutines as allowed by the GOMAXPROCS on construction.
func newTxSenderCacher(threads int) *txSenderCacher {
cacher := &txSenderCacher{
tasks: make(chan *txSenderCacherRequest, threads),
threads: threads,
}
for i := 0; i < threads; i++ {
go cacher.cache()
}
return cacher
}
// cache is an infinite loop, caching transaction senders from various forms of
// data structures.
func (cacher *txSenderCacher) cache() {
for task := range cacher.tasks {
for i := 0; i < len(task.txs); i += task.inc {
types.Sender(task.signer, task.txs[i])
}
}
}
// recover recovers the senders from a batch of transactions and caches them
// back into the same data structures. There is no validation being done, nor
// any reaction to invalid signatures. That is up to calling code later.
func (cacher *txSenderCacher) recover(signer types.Signer, txs []*types.Transaction) {
// If there's nothing to recover, abort
if len(txs) == 0 {
return
}
// Ensure we have meaningful task sizes and schedule the recoveries
tasks := cacher.threads
if len(txs) < tasks*4 {
tasks = (len(txs) + 3) / 4
}
for i := 0; i < tasks; i++ {
cacher.tasks <- &txSenderCacherRequest{
signer: signer,
txs: txs[i:],
inc: tasks,
}
}
}
// recoverFromBlocks recovers the senders from a batch of blocks and caches them
// back into the same data structures. There is no validation being done, nor
// any reaction to invalid signatures. That is up to calling code later.
func (cacher *txSenderCacher) recoverFromBlocks(signer types.Signer, blocks []*types.Block) {
count := 0
for _, block := range blocks {
count += len(block.Transactions())
}
txs := make([]*types.Transaction, 0, count)
for _, block := range blocks {
txs = append(txs, block.Transactions()...)
}
cacher.recover(signer, txs)
}
|