aboutsummaryrefslogtreecommitdiff
path: root/core/tx_list.go
diff options
context:
space:
mode:
Diffstat (limited to 'core/tx_list.go')
-rw-r--r--core/tx_list.go520
1 files changed, 520 insertions, 0 deletions
diff --git a/core/tx_list.go b/core/tx_list.go
new file mode 100644
index 0000000..a54ca77
--- /dev/null
+++ b/core/tx_list.go
@@ -0,0 +1,520 @@
+// Copyright 2016 The go-ethereum Authors
+// This file is part of the go-ethereum library.
+//
+// The go-ethereum library is free software: you can redistribute it and/or modify
+// it under the terms of the GNU Lesser General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// The go-ethereum library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU Lesser General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public License
+// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
+
+package core
+
+import (
+ "container/heap"
+ "math"
+ "math/big"
+ "sort"
+
+ "github.com/ava-labs/go-ethereum/common"
+ "github.com/ava-labs/go-ethereum/core/types"
+ "github.com/ava-labs/go-ethereum/log"
+)
+
+// nonceHeap is a heap.Interface implementation over 64bit unsigned integers for
+// retrieving sorted transactions from the possibly gapped future queue.
+type nonceHeap []uint64
+
+func (h nonceHeap) Len() int { return len(h) }
+func (h nonceHeap) Less(i, j int) bool { return h[i] < h[j] }
+func (h nonceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
+
+func (h *nonceHeap) Push(x interface{}) {
+ *h = append(*h, x.(uint64))
+}
+
+func (h *nonceHeap) Pop() interface{} {
+ old := *h
+ n := len(old)
+ x := old[n-1]
+ *h = old[0 : n-1]
+ return x
+}
+
+// txSortedMap is a nonce->transaction hash map with a heap based index to allow
+// iterating over the contents in a nonce-incrementing way.
+type txSortedMap struct {
+ items map[uint64]*types.Transaction // Hash map storing the transaction data
+ index *nonceHeap // Heap of nonces of all the stored transactions (non-strict mode)
+ cache types.Transactions // Cache of the transactions already sorted
+}
+
+// newTxSortedMap creates a new nonce-sorted transaction map.
+func newTxSortedMap() *txSortedMap {
+ return &txSortedMap{
+ items: make(map[uint64]*types.Transaction),
+ index: new(nonceHeap),
+ }
+}
+
+// Get retrieves the current transactions associated with the given nonce.
+func (m *txSortedMap) Get(nonce uint64) *types.Transaction {
+ return m.items[nonce]
+}
+
+// Put inserts a new transaction into the map, also updating the map's nonce
+// index. If a transaction already exists with the same nonce, it's overwritten.
+func (m *txSortedMap) Put(tx *types.Transaction) {
+ nonce := tx.Nonce()
+ if m.items[nonce] == nil {
+ heap.Push(m.index, nonce)
+ }
+ m.items[nonce], m.cache = tx, nil
+}
+
+// Forward removes all transactions from the map with a nonce lower than the
+// provided threshold. Every removed transaction is returned for any post-removal
+// maintenance.
+func (m *txSortedMap) Forward(threshold uint64) types.Transactions {
+ var removed types.Transactions
+
+ // Pop off heap items until the threshold is reached
+ for m.index.Len() > 0 && (*m.index)[0] < threshold {
+ nonce := heap.Pop(m.index).(uint64)
+ removed = append(removed, m.items[nonce])
+ delete(m.items, nonce)
+ }
+ // If we had a cached order, shift the front
+ if m.cache != nil {
+ m.cache = m.cache[len(removed):]
+ }
+ return removed
+}
+
+// Filter iterates over the list of transactions and removes all of them for which
+// the specified function evaluates to true.
+func (m *txSortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions {
+ var removed types.Transactions
+
+ // Collect all the transactions to filter out
+ for nonce, tx := range m.items {
+ if filter(tx) {
+ removed = append(removed, tx)
+ delete(m.items, nonce)
+ }
+ }
+ // If transactions were removed, the heap and cache are ruined
+ if len(removed) > 0 {
+ *m.index = make([]uint64, 0, len(m.items))
+ for nonce := range m.items {
+ *m.index = append(*m.index, nonce)
+ }
+ heap.Init(m.index)
+
+ m.cache = nil
+ }
+ return removed
+}
+
+// Cap places a hard limit on the number of items, returning all transactions
+// exceeding that limit.
+func (m *txSortedMap) Cap(threshold int) types.Transactions {
+ // Short circuit if the number of items is under the limit
+ if len(m.items) <= threshold {
+ return nil
+ }
+ // Otherwise gather and drop the highest nonce'd transactions
+ var drops types.Transactions
+
+ sort.Sort(*m.index)
+ for size := len(m.items); size > threshold; size-- {
+ drops = append(drops, m.items[(*m.index)[size-1]])
+ delete(m.items, (*m.index)[size-1])
+ }
+ *m.index = (*m.index)[:threshold]
+ heap.Init(m.index)
+
+ // If we had a cache, shift the back
+ if m.cache != nil {
+ m.cache = m.cache[:len(m.cache)-len(drops)]
+ }
+ return drops
+}
+
+// Remove deletes a transaction from the maintained map, returning whether the
+// transaction was found.
+func (m *txSortedMap) Remove(nonce uint64) bool {
+ // Short circuit if no transaction is present
+ _, ok := m.items[nonce]
+ if !ok {
+ return false
+ }
+ // Otherwise delete the transaction and fix the heap index
+ for i := 0; i < m.index.Len(); i++ {
+ if (*m.index)[i] == nonce {
+ heap.Remove(m.index, i)
+ break
+ }
+ }
+ delete(m.items, nonce)
+ m.cache = nil
+
+ return true
+}
+
+// Ready retrieves a sequentially increasing list of transactions starting at the
+// provided nonce that is ready for processing. The returned transactions will be
+// removed from the list.
+//
+// Note, all transactions with nonces lower than start will also be returned to
+// prevent getting into and invalid state. This is not something that should ever
+// happen but better to be self correcting than failing!
+func (m *txSortedMap) Ready(start uint64) types.Transactions {
+ // Short circuit if no transactions are available
+ if m.index.Len() == 0 || (*m.index)[0] > start {
+ return nil
+ }
+ // Otherwise start accumulating incremental transactions
+ var ready types.Transactions
+ for next := (*m.index)[0]; m.index.Len() > 0 && (*m.index)[0] == next; next++ {
+ ready = append(ready, m.items[next])
+ delete(m.items, next)
+ heap.Pop(m.index)
+ }
+ m.cache = nil
+
+ return ready
+}
+
+// Len returns the length of the transaction map.
+func (m *txSortedMap) Len() int {
+ return len(m.items)
+}
+
+// Flatten creates a nonce-sorted slice of transactions based on the loosely
+// sorted internal representation. The result of the sorting is cached in case
+// it's requested again before any modifications are made to the contents.
+func (m *txSortedMap) Flatten() types.Transactions {
+ // If the sorting was not cached yet, create and cache it
+ if m.cache == nil {
+ m.cache = make(types.Transactions, 0, len(m.items))
+ for _, tx := range m.items {
+ m.cache = append(m.cache, tx)
+ }
+ sort.Sort(types.TxByNonce(m.cache))
+ }
+ // Copy the cache to prevent accidental modifications
+ txs := make(types.Transactions, len(m.cache))
+ copy(txs, m.cache)
+ return txs
+}
+
+// txList is a "list" of transactions belonging to an account, sorted by account
+// nonce. The same type can be used both for storing contiguous transactions for
+// the executable/pending queue; and for storing gapped transactions for the non-
+// executable/future queue, with minor behavioral changes.
+type txList struct {
+ strict bool // Whether nonces are strictly continuous or not
+ txs *txSortedMap // Heap indexed sorted hash map of the transactions
+
+ costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance)
+ gascap uint64 // Gas limit of the highest spending transaction (reset only if exceeds block limit)
+}
+
+// newTxList create a new transaction list for maintaining nonce-indexable fast,
+// gapped, sortable transaction lists.
+func newTxList(strict bool) *txList {
+ return &txList{
+ strict: strict,
+ txs: newTxSortedMap(),
+ costcap: new(big.Int),
+ }
+}
+
+// Overlaps returns whether the transaction specified has the same nonce as one
+// already contained within the list.
+func (l *txList) Overlaps(tx *types.Transaction) bool {
+ return l.txs.Get(tx.Nonce()) != nil
+}
+
+// Add tries to insert a new transaction into the list, returning whether the
+// transaction was accepted, and if yes, any previous transaction it replaced.
+//
+// If the new transaction is accepted into the list, the lists' cost and gas
+// thresholds are also potentially updated.
+func (l *txList) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Transaction) {
+ // If there's an older better transaction, abort
+ old := l.txs.Get(tx.Nonce())
+ if old != nil {
+ threshold := new(big.Int).Div(new(big.Int).Mul(old.GasPrice(), big.NewInt(100+int64(priceBump))), big.NewInt(100))
+ // Have to ensure that the new gas price is higher than the old gas
+ // price as well as checking the percentage threshold to ensure that
+ // this is accurate for low (Wei-level) gas price replacements
+ if old.GasPrice().Cmp(tx.GasPrice()) >= 0 || threshold.Cmp(tx.GasPrice()) > 0 {
+ return false, nil
+ }
+ }
+ // Otherwise overwrite the old transaction with the current one
+ l.txs.Put(tx)
+ if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 {
+ l.costcap = cost
+ }
+ if gas := tx.Gas(); l.gascap < gas {
+ l.gascap = gas
+ }
+ return true, old
+}
+
+// Forward removes all transactions from the list with a nonce lower than the
+// provided threshold. Every removed transaction is returned for any post-removal
+// maintenance.
+func (l *txList) Forward(threshold uint64) types.Transactions {
+ return l.txs.Forward(threshold)
+}
+
+// Filter removes all transactions from the list with a cost or gas limit higher
+// than the provided thresholds. Every removed transaction is returned for any
+// post-removal maintenance. Strict-mode invalidated transactions are also
+// returned.
+//
+// This method uses the cached costcap and gascap to quickly decide if there's even
+// a point in calculating all the costs or if the balance covers all. If the threshold
+// is lower than the costgas cap, the caps will be reset to a new high after removing
+// the newly invalidated transactions.
+func (l *txList) Filter(costLimit *big.Int, gasLimit uint64) (types.Transactions, types.Transactions) {
+ // If all transactions are below the threshold, short circuit
+ if l.costcap.Cmp(costLimit) <= 0 && l.gascap <= gasLimit {
+ return nil, nil
+ }
+ l.costcap = new(big.Int).Set(costLimit) // Lower the caps to the thresholds
+ l.gascap = gasLimit
+
+ // Filter out all the transactions above the account's funds
+ removed := l.txs.Filter(func(tx *types.Transaction) bool { return tx.Cost().Cmp(costLimit) > 0 || tx.Gas() > gasLimit })
+
+ // If the list was strict, filter anything above the lowest nonce
+ var invalids types.Transactions
+
+ if l.strict && len(removed) > 0 {
+ lowest := uint64(math.MaxUint64)
+ for _, tx := range removed {
+ if nonce := tx.Nonce(); lowest > nonce {
+ lowest = nonce
+ }
+ }
+ invalids = l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest })
+ }
+ return removed, invalids
+}
+
+// Cap places a hard limit on the number of items, returning all transactions
+// exceeding that limit.
+func (l *txList) Cap(threshold int) types.Transactions {
+ return l.txs.Cap(threshold)
+}
+
+// Remove deletes a transaction from the maintained list, returning whether the
+// transaction was found, and also returning any transaction invalidated due to
+// the deletion (strict mode only).
+func (l *txList) Remove(tx *types.Transaction) (bool, types.Transactions) {
+ // Remove the transaction from the set
+ nonce := tx.Nonce()
+ if removed := l.txs.Remove(nonce); !removed {
+ return false, nil
+ }
+ // In strict mode, filter out non-executable transactions
+ if l.strict {
+ return true, l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > nonce })
+ }
+ return true, nil
+}
+
+// Ready retrieves a sequentially increasing list of transactions starting at the
+// provided nonce that is ready for processing. The returned transactions will be
+// removed from the list.
+//
+// Note, all transactions with nonces lower than start will also be returned to
+// prevent getting into and invalid state. This is not something that should ever
+// happen but better to be self correcting than failing!
+func (l *txList) Ready(start uint64) types.Transactions {
+ return l.txs.Ready(start)
+}
+
+// Len returns the length of the transaction list.
+func (l *txList) Len() int {
+ return l.txs.Len()
+}
+
+// Empty returns whether the list of transactions is empty or not.
+func (l *txList) Empty() bool {
+ return l.Len() == 0
+}
+
+// Flatten creates a nonce-sorted slice of transactions based on the loosely
+// sorted internal representation. The result of the sorting is cached in case
+// it's requested again before any modifications are made to the contents.
+func (l *txList) Flatten() types.Transactions {
+ return l.txs.Flatten()
+}
+
+// priceHeap is a heap.Interface implementation over transactions for retrieving
+// price-sorted transactions to discard when the pool fills up.
+type priceHeap []*types.Transaction
+
+func (h priceHeap) Len() int { return len(h) }
+func (h priceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
+
+func (h priceHeap) Less(i, j int) bool {
+ // Sort primarily by price, returning the cheaper one
+ switch h[i].GasPrice().Cmp(h[j].GasPrice()) {
+ case -1:
+ return true
+ case 1:
+ return false
+ }
+ // If the prices match, stabilize via nonces (high nonce is worse)
+ return h[i].Nonce() > h[j].Nonce()
+}
+
+func (h *priceHeap) Push(x interface{}) {
+ *h = append(*h, x.(*types.Transaction))
+}
+
+func (h *priceHeap) Pop() interface{} {
+ old := *h
+ n := len(old)
+ x := old[n-1]
+ *h = old[0 : n-1]
+ return x
+}
+
+// txPricedList is a price-sorted heap to allow operating on transactions pool
+// contents in a price-incrementing way.
+type txPricedList struct {
+ all *txLookup // Pointer to the map of all transactions
+ items *priceHeap // Heap of prices of all the stored transactions
+ stales int // Number of stale price points to (re-heap trigger)
+}
+
+// newTxPricedList creates a new price-sorted transaction heap.
+func newTxPricedList(all *txLookup) *txPricedList {
+ return &txPricedList{
+ all: all,
+ items: new(priceHeap),
+ }
+}
+
+// Put inserts a new transaction into the heap.
+func (l *txPricedList) Put(tx *types.Transaction) {
+ heap.Push(l.items, tx)
+}
+
+// Removed notifies the prices transaction list that an old transaction dropped
+// from the pool. The list will just keep a counter of stale objects and update
+// the heap if a large enough ratio of transactions go stale.
+func (l *txPricedList) Removed(count int) {
+ // Bump the stale counter, but exit if still too low (< 25%)
+ l.stales += count
+ if l.stales <= len(*l.items)/4 {
+ return
+ }
+ // Seems we've reached a critical number of stale transactions, reheap
+ reheap := make(priceHeap, 0, l.all.Count())
+
+ l.stales, l.items = 0, &reheap
+ l.all.Range(func(hash common.Hash, tx *types.Transaction) bool {
+ *l.items = append(*l.items, tx)
+ return true
+ })
+ heap.Init(l.items)
+}
+
+// Cap finds all the transactions below the given price threshold, drops them
+// from the priced list and returns them for further removal from the entire pool.
+func (l *txPricedList) Cap(threshold *big.Int, local *accountSet) types.Transactions {
+ drop := make(types.Transactions, 0, 128) // Remote underpriced transactions to drop
+ save := make(types.Transactions, 0, 64) // Local underpriced transactions to keep
+
+ for len(*l.items) > 0 {
+ // Discard stale transactions if found during cleanup
+ tx := heap.Pop(l.items).(*types.Transaction)
+ if l.all.Get(tx.Hash()) == nil {
+ l.stales--
+ continue
+ }
+ // Stop the discards if we've reached the threshold
+ if tx.GasPrice().Cmp(threshold) >= 0 {
+ save = append(save, tx)
+ break
+ }
+ // Non stale transaction found, discard unless local
+ if local.containsTx(tx) {
+ save = append(save, tx)
+ } else {
+ drop = append(drop, tx)
+ }
+ }
+ for _, tx := range save {
+ heap.Push(l.items, tx)
+ }
+ return drop
+}
+
+// Underpriced checks whether a transaction is cheaper than (or as cheap as) the
+// lowest priced transaction currently being tracked.
+func (l *txPricedList) Underpriced(tx *types.Transaction, local *accountSet) bool {
+ // Local transactions cannot be underpriced
+ if local.containsTx(tx) {
+ return false
+ }
+ // Discard stale price points if found at the heap start
+ for len(*l.items) > 0 {
+ head := []*types.Transaction(*l.items)[0]
+ if l.all.Get(head.Hash()) == nil {
+ l.stales--
+ heap.Pop(l.items)
+ continue
+ }
+ break
+ }
+ // Check if the transaction is underpriced or not
+ if len(*l.items) == 0 {
+ log.Error("Pricing query for empty pool") // This cannot happen, print to catch programming errors
+ return false
+ }
+ cheapest := []*types.Transaction(*l.items)[0]
+ return cheapest.GasPrice().Cmp(tx.GasPrice()) >= 0
+}
+
+// Discard finds a number of most underpriced transactions, removes them from the
+// priced list and returns them for further removal from the entire pool.
+func (l *txPricedList) Discard(count int, local *accountSet) types.Transactions {
+ drop := make(types.Transactions, 0, count) // Remote underpriced transactions to drop
+ save := make(types.Transactions, 0, 64) // Local underpriced transactions to keep
+
+ for len(*l.items) > 0 && count > 0 {
+ // Discard stale transactions if found during cleanup
+ tx := heap.Pop(l.items).(*types.Transaction)
+ if l.all.Get(tx.Hash()) == nil {
+ l.stales--
+ continue
+ }
+ // Non stale transaction found, discard unless local
+ if local.containsTx(tx) {
+ save = append(save, tx)
+ } else {
+ drop = append(drop, tx)
+ count--
+ }
+ }
+ for _, tx := range save {
+ heap.Push(l.items, tx)
+ }
+ return drop
+}