aboutsummaryrefslogtreecommitdiff
path: root/accounts/abi/type.go
diff options
context:
space:
mode:
Diffstat (limited to 'accounts/abi/type.go')
-rw-r--r--accounts/abi/type.go348
1 files changed, 348 insertions, 0 deletions
diff --git a/accounts/abi/type.go b/accounts/abi/type.go
new file mode 100644
index 0000000..597d314
--- /dev/null
+++ b/accounts/abi/type.go
@@ -0,0 +1,348 @@
+// Copyright 2015 The go-ethereum Authors
+// This file is part of the go-ethereum library.
+//
+// The go-ethereum library is free software: you can redistribute it and/or modify
+// it under the terms of the GNU Lesser General Public License as published by
+// the Free Software Foundation, either version 3 of the License, or
+// (at your option) any later version.
+//
+// The go-ethereum library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU Lesser General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public License
+// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
+
+package abi
+
+import (
+ "errors"
+ "fmt"
+ "reflect"
+ "regexp"
+ "strconv"
+ "strings"
+)
+
+// Type enumerator
+const (
+ IntTy byte = iota
+ UintTy
+ BoolTy
+ StringTy
+ SliceTy
+ ArrayTy
+ TupleTy
+ AddressTy
+ FixedBytesTy
+ BytesTy
+ HashTy
+ FixedPointTy
+ FunctionTy
+)
+
+// Type is the reflection of the supported argument type
+type Type struct {
+ Elem *Type
+ Kind reflect.Kind
+ Type reflect.Type
+ Size int
+ T byte // Our own type checking
+
+ stringKind string // holds the unparsed string for deriving signatures
+
+ // Tuple relative fields
+ TupleElems []*Type // Type information of all tuple fields
+ TupleRawNames []string // Raw field name of all tuple fields
+}
+
+var (
+ // typeRegex parses the abi sub types
+ typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?")
+)
+
+// NewType creates a new reflection type of abi type given in t.
+func NewType(t string, components []ArgumentMarshaling) (typ Type, err error) {
+ // check that array brackets are equal if they exist
+ if strings.Count(t, "[") != strings.Count(t, "]") {
+ return Type{}, fmt.Errorf("invalid arg type in abi")
+ }
+ typ.stringKind = t
+
+ // if there are brackets, get ready to go into slice/array mode and
+ // recursively create the type
+ if strings.Count(t, "[") != 0 {
+ i := strings.LastIndex(t, "[")
+ // recursively embed the type
+ embeddedType, err := NewType(t[:i], components)
+ if err != nil {
+ return Type{}, err
+ }
+ // grab the last cell and create a type from there
+ sliced := t[i:]
+ // grab the slice size with regexp
+ re := regexp.MustCompile("[0-9]+")
+ intz := re.FindAllString(sliced, -1)
+
+ if len(intz) == 0 {
+ // is a slice
+ typ.T = SliceTy
+ typ.Kind = reflect.Slice
+ typ.Elem = &embeddedType
+ typ.Type = reflect.SliceOf(embeddedType.Type)
+ typ.stringKind = embeddedType.stringKind + sliced
+ } else if len(intz) == 1 {
+ // is a array
+ typ.T = ArrayTy
+ typ.Kind = reflect.Array
+ typ.Elem = &embeddedType
+ typ.Size, err = strconv.Atoi(intz[0])
+ if err != nil {
+ return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
+ }
+ typ.Type = reflect.ArrayOf(typ.Size, embeddedType.Type)
+ typ.stringKind = embeddedType.stringKind + sliced
+ } else {
+ return Type{}, fmt.Errorf("invalid formatting of array type")
+ }
+ return typ, err
+ }
+ // parse the type and size of the abi-type.
+ matches := typeRegex.FindAllStringSubmatch(t, -1)
+ if len(matches) == 0 {
+ return Type{}, fmt.Errorf("invalid type '%v'", t)
+ }
+ parsedType := matches[0]
+
+ // varSize is the size of the variable
+ var varSize int
+ if len(parsedType[3]) > 0 {
+ var err error
+ varSize, err = strconv.Atoi(parsedType[2])
+ if err != nil {
+ return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
+ }
+ } else {
+ if parsedType[0] == "uint" || parsedType[0] == "int" {
+ // this should fail because it means that there's something wrong with
+ // the abi type (the compiler should always format it to the size...always)
+ return Type{}, fmt.Errorf("unsupported arg type: %s", t)
+ }
+ }
+ // varType is the parsed abi type
+ switch varType := parsedType[1]; varType {
+ case "int":
+ typ.Kind, typ.Type = reflectIntKindAndType(false, varSize)
+ typ.Size = varSize
+ typ.T = IntTy
+ case "uint":
+ typ.Kind, typ.Type = reflectIntKindAndType(true, varSize)
+ typ.Size = varSize
+ typ.T = UintTy
+ case "bool":
+ typ.Kind = reflect.Bool
+ typ.T = BoolTy
+ typ.Type = reflect.TypeOf(bool(false))
+ case "address":
+ typ.Kind = reflect.Array
+ typ.Type = addressT
+ typ.Size = 20
+ typ.T = AddressTy
+ case "string":
+ typ.Kind = reflect.String
+ typ.Type = reflect.TypeOf("")
+ typ.T = StringTy
+ case "bytes":
+ if varSize == 0 {
+ typ.T = BytesTy
+ typ.Kind = reflect.Slice
+ typ.Type = reflect.SliceOf(reflect.TypeOf(byte(0)))
+ } else {
+ typ.T = FixedBytesTy
+ typ.Kind = reflect.Array
+ typ.Size = varSize
+ typ.Type = reflect.ArrayOf(varSize, reflect.TypeOf(byte(0)))
+ }
+ case "tuple":
+ var (
+ fields []reflect.StructField
+ elems []*Type
+ names []string
+ expression string // canonical parameter expression
+ )
+ expression += "("
+ for idx, c := range components {
+ cType, err := NewType(c.Type, c.Components)
+ if err != nil {
+ return Type{}, err
+ }
+ if ToCamelCase(c.Name) == "" {
+ return Type{}, errors.New("abi: purely anonymous or underscored field is not supported")
+ }
+ fields = append(fields, reflect.StructField{
+ Name: ToCamelCase(c.Name), // reflect.StructOf will panic for any exported field.
+ Type: cType.Type,
+ Tag: reflect.StructTag("json:\"" + c.Name + "\""),
+ })
+ elems = append(elems, &cType)
+ names = append(names, c.Name)
+ expression += cType.stringKind
+ if idx != len(components)-1 {
+ expression += ","
+ }
+ }
+ expression += ")"
+ typ.Kind = reflect.Struct
+ typ.Type = reflect.StructOf(fields)
+ typ.TupleElems = elems
+ typ.TupleRawNames = names
+ typ.T = TupleTy
+ typ.stringKind = expression
+ case "function":
+ typ.Kind = reflect.Array
+ typ.T = FunctionTy
+ typ.Size = 24
+ typ.Type = reflect.ArrayOf(24, reflect.TypeOf(byte(0)))
+ default:
+ return Type{}, fmt.Errorf("unsupported arg type: %s", t)
+ }
+
+ return
+}
+
+// String implements Stringer
+func (t Type) String() (out string) {
+ return t.stringKind
+}
+
+func (t Type) pack(v reflect.Value) ([]byte, error) {
+ // dereference pointer first if it's a pointer
+ v = indirect(v)
+ if err := typeCheck(t, v); err != nil {
+ return nil, err
+ }
+
+ switch t.T {
+ case SliceTy, ArrayTy:
+ var ret []byte
+
+ if t.requiresLengthPrefix() {
+ // append length
+ ret = append(ret, packNum(reflect.ValueOf(v.Len()))...)
+ }
+
+ // calculate offset if any
+ offset := 0
+ offsetReq := isDynamicType(*t.Elem)
+ if offsetReq {
+ offset = getTypeSize(*t.Elem) * v.Len()
+ }
+ var tail []byte
+ for i := 0; i < v.Len(); i++ {
+ val, err := t.Elem.pack(v.Index(i))
+ if err != nil {
+ return nil, err
+ }
+ if !offsetReq {
+ ret = append(ret, val...)
+ continue
+ }
+ ret = append(ret, packNum(reflect.ValueOf(offset))...)
+ offset += len(val)
+ tail = append(tail, val...)
+ }
+ return append(ret, tail...), nil
+ case TupleTy:
+ // (T1,...,Tk) for k >= 0 and any types T1, …, Tk
+ // enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k))
+ // where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static
+ // type as
+ // head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string)
+ // and as
+ // head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1))))
+ // tail(X(i)) = enc(X(i))
+ // otherwise, i.e. if Ti is a dynamic type.
+ fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v)
+ if err != nil {
+ return nil, err
+ }
+ // Calculate prefix occupied size.
+ offset := 0
+ for _, elem := range t.TupleElems {
+ offset += getTypeSize(*elem)
+ }
+ var ret, tail []byte
+ for i, elem := range t.TupleElems {
+ field := v.FieldByName(fieldmap[t.TupleRawNames[i]])
+ if !field.IsValid() {
+ return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i])
+ }
+ val, err := elem.pack(field)
+ if err != nil {
+ return nil, err
+ }
+ if isDynamicType(*elem) {
+ ret = append(ret, packNum(reflect.ValueOf(offset))...)
+ tail = append(tail, val...)
+ offset += len(val)
+ } else {
+ ret = append(ret, val...)
+ }
+ }
+ return append(ret, tail...), nil
+
+ default:
+ return packElement(t, v), nil
+ }
+}
+
+// requireLengthPrefix returns whether the type requires any sort of length
+// prefixing.
+func (t Type) requiresLengthPrefix() bool {
+ return t.T == StringTy || t.T == BytesTy || t.T == SliceTy
+}
+
+// isDynamicType returns true if the type is dynamic.
+// The following types are called “dynamic”:
+// * bytes
+// * string
+// * T[] for any T
+// * T[k] for any dynamic T and any k >= 0
+// * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k
+func isDynamicType(t Type) bool {
+ if t.T == TupleTy {
+ for _, elem := range t.TupleElems {
+ if isDynamicType(*elem) {
+ return true
+ }
+ }
+ return false
+ }
+ return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem))
+}
+
+// getTypeSize returns the size that this type needs to occupy.
+// We distinguish static and dynamic types. Static types are encoded in-place
+// and dynamic types are encoded at a separately allocated location after the
+// current block.
+// So for a static variable, the size returned represents the size that the
+// variable actually occupies.
+// For a dynamic variable, the returned size is fixed 32 bytes, which is used
+// to store the location reference for actual value storage.
+func getTypeSize(t Type) int {
+ if t.T == ArrayTy && !isDynamicType(*t.Elem) {
+ // Recursively calculate type size if it is a nested array
+ if t.Elem.T == ArrayTy {
+ return t.Size * getTypeSize(*t.Elem)
+ }
+ return t.Size * 32
+ } else if t.T == TupleTy && !isDynamicType(t) {
+ total := 0
+ for _, elem := range t.TupleElems {
+ total += getTypeSize(*elem)
+ }
+ return total
+ }
+ return 32
+}