aboutsummaryrefslogblamecommitdiff
path: root/miner/worker.go
blob: 5124758524fc0b8fe3c9ccc9572f7003923e34ee (plain) (tree)
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021





























                                                                                  
         






















































































































































                                                                                                                                     
                     

 
                                                                                                                                                                                            





















                                                                                             
                                   




















































































                                                                                                                    









                                       

























































                                                                                                             


                                                                 



                                                            


                                                                 


























































































































































































































































                                                                                                                                                   
                                                      












                                                                                                                      
                                                                                  






























































































































































































































































































































































































                                                                                                                                                                                                
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
//
// NOTE: this piece of code is adopted from
// github.com/ethereum/go-ethereum/miner/worker.go,
// modified by Ted Yin.
// The modification is also licensed under the same LGPL.

package miner

import (
	"bytes"
	"errors"
	"math/big"
	"sync"
	"sync/atomic"
	"time"
    "fmt"

	mapset "github.com/deckarep/golang-set"
	"github.com/ethereum/go-ethereum/common"
	"github.com/ethereum/go-ethereum/consensus"
	"github.com/ethereum/go-ethereum/consensus/misc"
	"github.com/ethereum/go-ethereum/core"
	"github.com/ethereum/go-ethereum/core/state"
	"github.com/ethereum/go-ethereum/core/types"
	"github.com/ethereum/go-ethereum/event"
	"github.com/ethereum/go-ethereum/log"
	"github.com/ethereum/go-ethereum/params"
)

const (
	// resultQueueSize is the size of channel listening to sealing result.
	resultQueueSize = 10

	// txChanSize is the size of channel listening to NewTxsEvent.
	// The number is referenced from the size of tx pool.
	txChanSize = 4096

	// chainHeadChanSize is the size of channel listening to ChainHeadEvent.
	chainHeadChanSize = 10

	// chainSideChanSize is the size of channel listening to ChainSideEvent.
	chainSideChanSize = 10

	// resubmitAdjustChanSize is the size of resubmitting interval adjustment channel.
	resubmitAdjustChanSize = 10

	// miningLogAtDepth is the number of confirmations before logging successful mining.
	miningLogAtDepth = 7

	// minRecommitInterval is the minimal time interval to recreate the mining block with
	// any newly arrived transactions.
	minRecommitInterval = 1 * time.Second

	// maxRecommitInterval is the maximum time interval to recreate the mining block with
	// any newly arrived transactions.
	maxRecommitInterval = 15 * time.Second

	// intervalAdjustRatio is the impact a single interval adjustment has on sealing work
	// resubmitting interval.
	intervalAdjustRatio = 0.1

	// intervalAdjustBias is applied during the new resubmit interval calculation in favor of
	// increasing upper limit or decreasing lower limit so that the limit can be reachable.
	intervalAdjustBias = 200 * 1000.0 * 1000.0

	// staleThreshold is the maximum depth of the acceptable stale block.
	staleThreshold = 7
)

// environment is the worker's current environment and holds all of the current state information.
type environment struct {
	signer types.Signer

	state     *state.StateDB // apply state changes here
	ancestors mapset.Set     // ancestor set (used for checking uncle parent validity)
	family    mapset.Set     // family set (used for checking uncle invalidity)
	uncles    mapset.Set     // uncle set
	tcount    int            // tx count in cycle
	gasPool   *core.GasPool  // available gas used to pack transactions

	header   *types.Header
	txs      []*types.Transaction
	receipts []*types.Receipt
}

// task contains all information for consensus engine sealing and result submitting.
type task struct {
	receipts  []*types.Receipt
	state     *state.StateDB
	block     *types.Block
	createdAt time.Time
}

const (
	commitInterruptNone int32 = iota
	commitInterruptNewHead
	commitInterruptResubmit
)

// newWorkReq represents a request for new sealing work submitting with relative interrupt notifier.
type newWorkReq struct {
	interrupt *int32
	noempty   bool
	timestamp int64
}

// intervalAdjust represents a resubmitting interval adjustment.
type intervalAdjust struct {
	ratio float64
	inc   bool
}

// worker is the main object which takes care of submitting new work to consensus engine
// and gathering the sealing result.
type worker struct {
	config      *Config
	chainConfig *params.ChainConfig
	engine      consensus.Engine
	eth         Backend
	chain       *core.BlockChain

	// Subscriptions
	mux          *event.TypeMux
	txsCh        chan core.NewTxsEvent
	txsSub       event.Subscription
	chainHeadCh  chan core.ChainHeadEvent
	chainHeadSub event.Subscription
	chainSideCh  chan core.ChainSideEvent
	chainSideSub event.Subscription

	// Channels
	newWorkCh          chan *newWorkReq
	taskCh             chan *task
	resultCh           chan *types.Block
	startCh            chan struct{}
	exitCh             chan struct{}
	resubmitIntervalCh chan time.Duration
	resubmitAdjustCh   chan *intervalAdjust

	current      *environment                 // An environment for current running cycle.
	localUncles  map[common.Hash]*types.Block // A set of side blocks generated locally as the possible uncle blocks.
	remoteUncles map[common.Hash]*types.Block // A set of side blocks as the possible uncle blocks.
	unconfirmed  *unconfirmedBlocks           // A set of locally mined blocks pending canonicalness confirmations.

	mu       sync.RWMutex // The lock used to protect the coinbase and extra fields
	coinbase common.Address
	extra    []byte

	pendingMu    sync.RWMutex
	pendingTasks map[common.Hash]*task

	snapshotMu    sync.RWMutex // The lock used to protect the block snapshot and state snapshot
	snapshotBlock *types.Block
	snapshotState *state.StateDB

	// atomic status counters
	running int32 // The indicator whether the consensus engine is running or not.
	newTxs  int32 // New arrival transaction count since last sealing work submitting.

	// External functions
	isLocalBlock func(block *types.Block) bool // Function used to determine whether the specified block is mined by local miner.

	// Test hooks
	newTaskHook  func(*task)                        // Method to call upon receiving a new sealing task.
	skipSealHook func(*task) bool                   // Method to decide whether skipping the sealing.
	fullTaskHook func()                             // Method to call before pushing the full sealing task.
	resubmitHook func(time.Duration, time.Duration) // Method to call upon updating resubmitting interval.
    manualMining bool
}

func newWorker(config *Config, chainConfig *params.ChainConfig, engine consensus.Engine, eth Backend, mux *event.TypeMux, isLocalBlock func(*types.Block) bool, manualMining bool) *worker {
	worker := &worker{
		config:             config,
		chainConfig:        chainConfig,
		engine:             engine,
		eth:                eth,
		mux:                mux,
		chain:              eth.BlockChain(),
		isLocalBlock:       isLocalBlock,
		localUncles:        make(map[common.Hash]*types.Block),
		remoteUncles:       make(map[common.Hash]*types.Block),
		unconfirmed:        newUnconfirmedBlocks(eth.BlockChain(), miningLogAtDepth),
		pendingTasks:       make(map[common.Hash]*task),
		txsCh:              make(chan core.NewTxsEvent, txChanSize),
		chainHeadCh:        make(chan core.ChainHeadEvent, chainHeadChanSize),
		chainSideCh:        make(chan core.ChainSideEvent, chainSideChanSize),
		newWorkCh:          make(chan *newWorkReq),
		taskCh:             make(chan *task),
		resultCh:           make(chan *types.Block, resultQueueSize),
		exitCh:             make(chan struct{}),
		startCh:            make(chan struct{}, 1),
		resubmitIntervalCh: make(chan time.Duration),
		resubmitAdjustCh:   make(chan *intervalAdjust, resubmitAdjustChanSize),
        manualMining: manualMining,
	}
	// Subscribe NewTxsEvent for tx pool
	worker.txsSub = eth.TxPool().SubscribeNewTxsEvent(worker.txsCh)
	// Subscribe events for blockchain
	worker.chainHeadSub = eth.BlockChain().SubscribeChainHeadEvent(worker.chainHeadCh)
	worker.chainSideSub = eth.BlockChain().SubscribeChainSideEvent(worker.chainSideCh)

	// Sanitize recommit interval if the user-specified one is too short.
	recommit := worker.config.Recommit
	if recommit < minRecommitInterval {
		log.Warn("Sanitizing miner recommit interval", "provided", recommit, "updated", minRecommitInterval)
		recommit = minRecommitInterval
	}

	go worker.mainLoop()
	go worker.newWorkLoop(recommit)
	go worker.resultLoop()
	go worker.taskLoop()

	// Submit first work to initialize pending state.
	worker.startCh <- struct{}{}

	return worker
}

// setEtherbase sets the etherbase used to initialize the block coinbase field.
func (w *worker) setEtherbase(addr common.Address) {
	w.mu.Lock()
	defer w.mu.Unlock()
	w.coinbase = addr
}

// setExtra sets the content used to initialize the block extra field.
func (w *worker) setExtra(extra []byte) {
	w.mu.Lock()
	defer w.mu.Unlock()
	w.extra = extra
}

// setRecommitInterval updates the interval for miner sealing work recommitting.
func (w *worker) setRecommitInterval(interval time.Duration) {
	w.resubmitIntervalCh <- interval
}

// pending returns the pending state and corresponding block.
func (w *worker) pending() (*types.Block, *state.StateDB) {
	// return a snapshot to avoid contention on currentMu mutex
	w.snapshotMu.RLock()
	defer w.snapshotMu.RUnlock()
	if w.snapshotState == nil {
		return nil, nil
	}
	return w.snapshotBlock, w.snapshotState.Copy()
}

// pendingBlock returns pending block.
func (w *worker) pendingBlock() *types.Block {
	// return a snapshot to avoid contention on currentMu mutex
	w.snapshotMu.RLock()
	defer w.snapshotMu.RUnlock()
	return w.snapshotBlock
}

// start sets the running status as 1 and triggers new work submitting.
func (w *worker) start() {
	atomic.StoreInt32(&w.running, 1)
	w.startCh <- struct{}{}
}

// stop sets the running status as 0.
func (w *worker) stop() {
	atomic.StoreInt32(&w.running, 0)
}

// isRunning returns an indicator whether worker is running or not.
func (w *worker) isRunning() bool {
	return atomic.LoadInt32(&w.running) == 1
}

// close terminates all background threads maintained by the worker.
// Note the worker does not support being closed multiple times.
func (w *worker) close() {
	close(w.exitCh)
}

func (w *worker) genBlock() {
    interrupt := new(int32)
    *interrupt = commitInterruptNewHead
    w.newWorkCh <- &newWorkReq{
        interrupt: interrupt,
        noempty: false,
        timestamp: time.Now().Unix(),
    }
}

// newWorkLoop is a standalone goroutine to submit new mining work upon received events.
func (w *worker) newWorkLoop(recommit time.Duration) {
	var (
		interrupt   *int32
		minRecommit = recommit // minimal resubmit interval specified by user.
		timestamp   int64      // timestamp for each round of mining.
	)

	timer := time.NewTimer(0)
	<-timer.C // discard the initial tick

	// commit aborts in-flight transaction execution with given signal and resubmits a new one.
	commit := func(noempty bool, s int32) {
		if interrupt != nil {
			atomic.StoreInt32(interrupt, s)
		}
		interrupt = new(int32)
		w.newWorkCh <- &newWorkReq{interrupt: interrupt, noempty: noempty, timestamp: timestamp}
		timer.Reset(recommit)
		atomic.StoreInt32(&w.newTxs, 0)
	}
	// recalcRecommit recalculates the resubmitting interval upon feedback.
	recalcRecommit := func(target float64, inc bool) {
		var (
			prev = float64(recommit.Nanoseconds())
			next float64
		)
		if inc {
			next = prev*(1-intervalAdjustRatio) + intervalAdjustRatio*(target+intervalAdjustBias)
			// Recap if interval is larger than the maximum time interval
			if next > float64(maxRecommitInterval.Nanoseconds()) {
				next = float64(maxRecommitInterval.Nanoseconds())
			}
		} else {
			next = prev*(1-intervalAdjustRatio) + intervalAdjustRatio*(target-intervalAdjustBias)
			// Recap if interval is less than the user specified minimum
			if next < float64(minRecommit.Nanoseconds()) {
				next = float64(minRecommit.Nanoseconds())
			}
		}
		recommit = time.Duration(int64(next))
	}
	// clearPending cleans the stale pending tasks.
	clearPending := func(number uint64) {
		w.pendingMu.Lock()
		for h, t := range w.pendingTasks {
			if t.block.NumberU64()+staleThreshold <= number {
				delete(w.pendingTasks, h)
			}
		}
		w.pendingMu.Unlock()
	}

	for {
		select {
		case <-w.startCh:
			clearPending(w.chain.CurrentBlock().NumberU64())
			timestamp = time.Now().Unix()
            if !w.manualMining {
			    commit(false, commitInterruptNewHead)
            }

		case head := <-w.chainHeadCh:
			clearPending(head.Block.NumberU64())
			timestamp = time.Now().Unix()
            if !w.manualMining {
			    commit(false, commitInterruptNewHead)
            }

		case <-timer.C:
			// If mining is running resubmit a new work cycle periodically to pull in
			// higher priced transactions. Disable this overhead for pending blocks.
			if w.isRunning() && (w.chainConfig.Clique == nil || w.chainConfig.Clique.Period > 0) {
				// Short circuit if no new transaction arrives.
				if atomic.LoadInt32(&w.newTxs) == 0 {
					timer.Reset(recommit)
					continue
				}
				commit(true, commitInterruptResubmit)
			}

		case interval := <-w.resubmitIntervalCh:
			// Adjust resubmit interval explicitly by user.
			if interval < minRecommitInterval {
				log.Warn("Sanitizing miner recommit interval", "provided", interval, "updated", minRecommitInterval)
				interval = minRecommitInterval
			}
			log.Info("Miner recommit interval update", "from", minRecommit, "to", interval)
			minRecommit, recommit = interval, interval

			if w.resubmitHook != nil {
				w.resubmitHook(minRecommit, recommit)
			}

		case adjust := <-w.resubmitAdjustCh:
			// Adjust resubmit interval by feedback.
			if adjust.inc {
				before := recommit
				recalcRecommit(float64(recommit.Nanoseconds())/adjust.ratio, true)
				log.Trace("Increase miner recommit interval", "from", before, "to", recommit)
			} else {
				before := recommit
				recalcRecommit(float64(minRecommit.Nanoseconds()), false)
				log.Trace("Decrease miner recommit interval", "from", before, "to", recommit)
			}

			if w.resubmitHook != nil {
				w.resubmitHook(minRecommit, recommit)
			}

		case <-w.exitCh:
			return
		}
	}
}

// mainLoop is a standalone goroutine to regenerate the sealing task based on the received event.
func (w *worker) mainLoop() {
	defer w.txsSub.Unsubscribe()
	defer w.chainHeadSub.Unsubscribe()
	defer w.chainSideSub.Unsubscribe()

	for {
		select {
		case req := <-w.newWorkCh:
			w.commitNewWork(req.interrupt, req.noempty, req.timestamp)

		case ev := <-w.chainSideCh:
			// Short circuit for duplicate side blocks
			if _, exist := w.localUncles[ev.Block.Hash()]; exist {
				continue
			}
			if _, exist := w.remoteUncles[ev.Block.Hash()]; exist {
				continue
			}
			// Add side block to possible uncle block set depending on the author.
			if w.isLocalBlock != nil && w.isLocalBlock(ev.Block) {
				w.localUncles[ev.Block.Hash()] = ev.Block
			} else {
				w.remoteUncles[ev.Block.Hash()] = ev.Block
			}
			// If our mining block contains less than 2 uncle blocks,
			// add the new uncle block if valid and regenerate a mining block.
			if w.isRunning() && w.current != nil && w.current.uncles.Cardinality() < 2 {
				start := time.Now()
				if err := w.commitUncle(w.current, ev.Block.Header()); err == nil {
					var uncles []*types.Header
					w.current.uncles.Each(func(item interface{}) bool {
						hash, ok := item.(common.Hash)
						if !ok {
							return false
						}
						uncle, exist := w.localUncles[hash]
						if !exist {
							uncle, exist = w.remoteUncles[hash]
						}
						if !exist {
							return false
						}
						uncles = append(uncles, uncle.Header())
						return false
					})
					w.commit(uncles, nil, true, start)
				}
			}

		case ev := <-w.txsCh:
			// Apply transactions to the pending state if we're not mining.
			//
			// Note all transactions received may not be continuous with transactions
			// already included in the current mining block. These transactions will
			// be automatically eliminated.
			if !w.isRunning() && w.current != nil {
				// If block is already full, abort
				if gp := w.current.gasPool; gp != nil && gp.Gas() < params.TxGas {
					continue
				}
				w.mu.RLock()
				coinbase := w.coinbase
				w.mu.RUnlock()

				txs := make(map[common.Address]types.Transactions)
				for _, tx := range ev.Txs {
					acc, _ := types.Sender(w.current.signer, tx)
					txs[acc] = append(txs[acc], tx)
				}
				txset := types.NewTransactionsByPriceAndNonce(w.current.signer, txs)
				tcount := w.current.tcount
				w.commitTransactions(txset, coinbase, nil)
				// Only update the snapshot if any new transactons were added
				// to the pending block
				if tcount != w.current.tcount {
					w.updateSnapshot()
				}
			} else {
				// If clique is running in dev mode(period is 0), disable
				// advance sealing here.
				if w.chainConfig.Clique != nil && w.chainConfig.Clique.Period == 0 {
					w.commitNewWork(nil, true, time.Now().Unix())
				}
			}
			atomic.AddInt32(&w.newTxs, int32(len(ev.Txs)))

		// System stopped
		case <-w.exitCh:
			return
		case <-w.txsSub.Err():
			return
		case <-w.chainHeadSub.Err():
			return
		case <-w.chainSideSub.Err():
			return
		}
	}
}

// taskLoop is a standalone goroutine to fetch sealing task from the generator and
// push them to consensus engine.
func (w *worker) taskLoop() {
	var (
		stopCh chan struct{}
		prev   common.Hash
	)

	// interrupt aborts the in-flight sealing task.
	interrupt := func() {
		if stopCh != nil {
			close(stopCh)
			stopCh = nil
		}
	}
	for {
		select {
		case task := <-w.taskCh:
			if w.newTaskHook != nil {
				w.newTaskHook(task)
			}
			// Reject duplicate sealing work due to resubmitting.
			sealHash := w.engine.SealHash(task.block.Header())
			if sealHash == prev {
				continue
			}
			// Interrupt previous sealing operation
			interrupt()
			stopCh, prev = make(chan struct{}), sealHash

			if w.skipSealHook != nil && w.skipSealHook(task) {
				continue
			}
			w.pendingMu.Lock()
			w.pendingTasks[w.engine.SealHash(task.block.Header())] = task
			w.pendingMu.Unlock()

			if err := w.engine.Seal(w.chain, task.block, w.resultCh, stopCh); err != nil {
				log.Warn("Block sealing failed", "err", err)
			}
		case <-w.exitCh:
			interrupt()
			return
		}
	}
}

// resultLoop is a standalone goroutine to handle sealing result submitting
// and flush relative data to the database.
func (w *worker) resultLoop() {
	for {
		select {
		case block := <-w.resultCh:
			// Short circuit when receiving empty result.
			if block == nil {
				continue
			}
			// Short circuit when receiving duplicate result caused by resubmitting.
			if w.chain.HasBlock(block.Hash(), block.NumberU64()) {
				continue
			}
			var (
				sealhash = w.engine.SealHash(block.Header())
				hash     = block.Hash()
			)
			w.pendingMu.RLock()
			task, exist := w.pendingTasks[sealhash]
			w.pendingMu.RUnlock()
			if !exist {
				log.Error("Block found but no relative pending task", "number", block.Number(), "sealhash", sealhash, "hash", hash)
				continue
			}
			// Different block could share same sealhash, deep copy here to prevent write-write conflict.
			var (
				receipts = make([]*types.Receipt, len(task.receipts))
				logs     []*types.Log
			)
			for i, receipt := range task.receipts {
				// add block location fields
				receipt.BlockHash = hash
				receipt.BlockNumber = block.Number()
				receipt.TransactionIndex = uint(i)

				receipts[i] = new(types.Receipt)
				*receipts[i] = *receipt
				// Update the block hash in all logs since it is now available and not when the
				// receipt/log of individual transactions were created.
				for _, log := range receipt.Logs {
					log.BlockHash = hash
				}
				logs = append(logs, receipt.Logs...)
			}
			// Commit block and state to database.
			stat, err := w.chain.WriteBlockWithState(block, receipts, task.state)
			if err != nil {
				log.Error("Failed writing block to chain", "err", err)
				continue
			}
			log.Info("Successfully sealed new block", "number", block.Number(), "sealhash", sealhash, "hash", hash,
				"elapsed", common.PrettyDuration(time.Since(task.createdAt)))

			// Broadcast the block and announce chain insertion event
			w.mux.Post(core.NewMinedBlockEvent{Block: block})
            //w.chain.FastSyncCommitHead(block.Hash())

			var events []interface{}
			switch stat {
			case core.CanonStatTy:
				events = append(events, core.ChainEvent{Block: block, Hash: block.Hash(), Logs: logs})
				events = append(events, core.ChainHeadEvent{Block: block})
			case core.SideStatTy:
				events = append(events, core.ChainSideEvent{Block: block})
			}
			w.chain.PostChainEvents(events, logs)

			// Insert the block into the set of pending ones to resultLoop for confirmations
			w.unconfirmed.Insert(block.NumberU64(), block.Hash())
            fmt.Printf("new parent: %s\n", w.chain.CurrentBlock().Hash().String())

		case <-w.exitCh:
			return
		}
	}
}

// makeCurrent creates a new environment for the current cycle.
func (w *worker) makeCurrent(parent *types.Block, header *types.Header) error {
	state, err := w.chain.StateAt(parent.Root())
	if err != nil {
		return err
	}
	env := &environment{
		signer:    types.NewEIP155Signer(w.chainConfig.ChainID),
		state:     state,
		ancestors: mapset.NewSet(),
		family:    mapset.NewSet(),
		uncles:    mapset.NewSet(),
		header:    header,
	}

	// when 08 is processed ancestors contain 07 (quick block)
	for _, ancestor := range w.chain.GetBlocksFromHash(parent.Hash(), 7) {
		for _, uncle := range ancestor.Uncles() {
			env.family.Add(uncle.Hash())
		}
		env.family.Add(ancestor.Hash())
		env.ancestors.Add(ancestor.Hash())
	}

	// Keep track of transactions which return errors so they can be removed
	env.tcount = 0
	w.current = env
	return nil
}

// commitUncle adds the given block to uncle block set, returns error if failed to add.
func (w *worker) commitUncle(env *environment, uncle *types.Header) error {
	hash := uncle.Hash()
	if env.uncles.Contains(hash) {
		return errors.New("uncle not unique")
	}
	if env.header.ParentHash == uncle.ParentHash {
		return errors.New("uncle is sibling")
	}
	if !env.ancestors.Contains(uncle.ParentHash) {
		return errors.New("uncle's parent unknown")
	}
	if env.family.Contains(hash) {
		return errors.New("uncle already included")
	}
	env.uncles.Add(uncle.Hash())
	return nil
}

// updateSnapshot updates pending snapshot block and state.
// Note this function assumes the current variable is thread safe.
func (w *worker) updateSnapshot() {
	w.snapshotMu.Lock()
	defer w.snapshotMu.Unlock()

	var uncles []*types.Header
	w.current.uncles.Each(func(item interface{}) bool {
		hash, ok := item.(common.Hash)
		if !ok {
			return false
		}
		uncle, exist := w.localUncles[hash]
		if !exist {
			uncle, exist = w.remoteUncles[hash]
		}
		if !exist {
			return false
		}
		uncles = append(uncles, uncle.Header())
		return false
	})

	w.snapshotBlock = types.NewBlock(
		w.current.header,
		w.current.txs,
		uncles,
		w.current.receipts,
	)

	w.snapshotState = w.current.state.Copy()
}

func (w *worker) commitTransaction(tx *types.Transaction, coinbase common.Address) ([]*types.Log, error) {
	snap := w.current.state.Snapshot()

	receipt, _, err := core.ApplyTransaction(w.chainConfig, w.chain, &coinbase, w.current.gasPool, w.current.state, w.current.header, tx, &w.current.header.GasUsed, *w.chain.GetVMConfig())
	if err != nil {
		w.current.state.RevertToSnapshot(snap)
		return nil, err
	}
	w.current.txs = append(w.current.txs, tx)
	w.current.receipts = append(w.current.receipts, receipt)

	return receipt.Logs, nil
}

func (w *worker) commitTransactions(txs *types.TransactionsByPriceAndNonce, coinbase common.Address, interrupt *int32) bool {
	// Short circuit if current is nil
	if w.current == nil {
		return true
	}

	if w.current.gasPool == nil {
		w.current.gasPool = new(core.GasPool).AddGas(w.current.header.GasLimit)
	}

	var coalescedLogs []*types.Log

	for {
		// In the following three cases, we will interrupt the execution of the transaction.
		// (1) new head block event arrival, the interrupt signal is 1
		// (2) worker start or restart, the interrupt signal is 1
		// (3) worker recreate the mining block with any newly arrived transactions, the interrupt signal is 2.
		// For the first two cases, the semi-finished work will be discarded.
		// For the third case, the semi-finished work will be submitted to the consensus engine.
		if interrupt != nil && atomic.LoadInt32(interrupt) != commitInterruptNone {
			// Notify resubmit loop to increase resubmitting interval due to too frequent commits.
			if atomic.LoadInt32(interrupt) == commitInterruptResubmit {
				ratio := float64(w.current.header.GasLimit-w.current.gasPool.Gas()) / float64(w.current.header.GasLimit)
				if ratio < 0.1 {
					ratio = 0.1
				}
				w.resubmitAdjustCh <- &intervalAdjust{
					ratio: ratio,
					inc:   true,
				}
			}
			return atomic.LoadInt32(interrupt) == commitInterruptNewHead
		}
		// If we don't have enough gas for any further transactions then we're done
		if w.current.gasPool.Gas() < params.TxGas {
			log.Trace("Not enough gas for further transactions", "have", w.current.gasPool, "want", params.TxGas)
			break
		}
		// Retrieve the next transaction and abort if all done
		tx := txs.Peek()
		if tx == nil {
			break
		}
		// Error may be ignored here. The error has already been checked
		// during transaction acceptance is the transaction pool.
		//
		// We use the eip155 signer regardless of the current hf.
		from, _ := types.Sender(w.current.signer, tx)
		// Check whether the tx is replay protected. If we're not in the EIP155 hf
		// phase, start ignoring the sender until we do.
		if tx.Protected() && !w.chainConfig.IsEIP155(w.current.header.Number) {
			log.Trace("Ignoring reply protected transaction", "hash", tx.Hash(), "eip155", w.chainConfig.EIP155Block)

			txs.Pop()
			continue
		}
		// Start executing the transaction
		w.current.state.Prepare(tx.Hash(), common.Hash{}, w.current.tcount)

		logs, err := w.commitTransaction(tx, coinbase)
		switch err {
		case core.ErrGasLimitReached:
			// Pop the current out-of-gas transaction without shifting in the next from the account
			log.Trace("Gas limit exceeded for current block", "sender", from)
			txs.Pop()

		case core.ErrNonceTooLow:
			// New head notification data race between the transaction pool and miner, shift
			log.Trace("Skipping transaction with low nonce", "sender", from, "nonce", tx.Nonce())
			txs.Shift()

		case core.ErrNonceTooHigh:
			// Reorg notification data race between the transaction pool and miner, skip account =
			log.Trace("Skipping account with hight nonce", "sender", from, "nonce", tx.Nonce())
			txs.Pop()

		case nil:
			// Everything ok, collect the logs and shift in the next transaction from the same account
			coalescedLogs = append(coalescedLogs, logs...)
			w.current.tcount++
			txs.Shift()

		default:
			// Strange error, discard the transaction and get the next in line (note, the
			// nonce-too-high clause will prevent us from executing in vain).
			log.Debug("Transaction failed, account skipped", "hash", tx.Hash(), "err", err)
			txs.Shift()
		}
	}

	if !w.isRunning() && len(coalescedLogs) > 0 {
		// We don't push the pendingLogsEvent while we are mining. The reason is that
		// when we are mining, the worker will regenerate a mining block every 3 seconds.
		// In order to avoid pushing the repeated pendingLog, we disable the pending log pushing.

		// make a copy, the state caches the logs and these logs get "upgraded" from pending to mined
		// logs by filling in the block hash when the block was mined by the local miner. This can
		// cause a race condition if a log was "upgraded" before the PendingLogsEvent is processed.
		cpy := make([]*types.Log, len(coalescedLogs))
		for i, l := range coalescedLogs {
			cpy[i] = new(types.Log)
			*cpy[i] = *l
		}
		go w.mux.Post(core.PendingLogsEvent{Logs: cpy})
	}
	// Notify resubmit loop to decrease resubmitting interval if current interval is larger
	// than the user-specified one.
	if interrupt != nil {
		w.resubmitAdjustCh <- &intervalAdjust{inc: false}
	}
	return false
}

// commitNewWork generates several new sealing tasks based on the parent block.
func (w *worker) commitNewWork(interrupt *int32, noempty bool, timestamp int64) {
	w.mu.RLock()
	defer w.mu.RUnlock()

	tstart := time.Now()
	parent := w.chain.CurrentBlock()

	if parent.Time() >= uint64(timestamp) {
		timestamp = int64(parent.Time() + 1)
	}
	// this will ensure we're not going off too far in the future
	if now := time.Now().Unix(); timestamp > now+1 {
		wait := time.Duration(timestamp-now) * time.Second
		log.Info("Mining too far in the future", "wait", common.PrettyDuration(wait))
		time.Sleep(wait)
	}

	num := parent.Number()
	header := &types.Header{
		ParentHash: parent.Hash(),
		Number:     num.Add(num, common.Big1),
		GasLimit:   core.CalcGasLimit(parent, w.config.GasFloor, w.config.GasCeil),
		Extra:      w.extra,
		Time:       uint64(timestamp),
	}
	// Only set the coinbase if our consensus engine is running (avoid spurious block rewards)
	if w.isRunning() {
		if w.coinbase == (common.Address{}) {
			log.Error("Refusing to mine without etherbase")
			return
		}
		header.Coinbase = w.coinbase
	}
	if err := w.engine.Prepare(w.chain, header); err != nil {
		log.Error("Failed to prepare header for mining", "err", err)
		return
	}
	// If we are care about TheDAO hard-fork check whether to override the extra-data or not
	if daoBlock := w.chainConfig.DAOForkBlock; daoBlock != nil {
		// Check whether the block is among the fork extra-override range
		limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange)
		if header.Number.Cmp(daoBlock) >= 0 && header.Number.Cmp(limit) < 0 {
			// Depending whether we support or oppose the fork, override differently
			if w.chainConfig.DAOForkSupport {
				header.Extra = common.CopyBytes(params.DAOForkBlockExtra)
			} else if bytes.Equal(header.Extra, params.DAOForkBlockExtra) {
				header.Extra = []byte{} // If miner opposes, don't let it use the reserved extra-data
			}
		}
	}
	// Could potentially happen if starting to mine in an odd state.
	err := w.makeCurrent(parent, header)
	if err != nil {
		log.Error("Failed to create mining context", "err", err)
		return
	}
	// Create the current work task and check any fork transitions needed
	env := w.current
	if w.chainConfig.DAOForkSupport && w.chainConfig.DAOForkBlock != nil && w.chainConfig.DAOForkBlock.Cmp(header.Number) == 0 {
		misc.ApplyDAOHardFork(env.state)
	}
	// Accumulate the uncles for the current block
	uncles := make([]*types.Header, 0, 2)
	commitUncles := func(blocks map[common.Hash]*types.Block) {
		// Clean up stale uncle blocks first
		for hash, uncle := range blocks {
			if uncle.NumberU64()+staleThreshold <= header.Number.Uint64() {
				delete(blocks, hash)
			}
		}
		for hash, uncle := range blocks {
			if len(uncles) == 2 {
				break
			}
			if err := w.commitUncle(env, uncle.Header()); err != nil {
				log.Trace("Possible uncle rejected", "hash", hash, "reason", err)
			} else {
				log.Debug("Committing new uncle to block", "hash", hash)
				uncles = append(uncles, uncle.Header())
			}
		}
	}
	// Prefer to locally generated uncle
	commitUncles(w.localUncles)
	commitUncles(w.remoteUncles)

	if !noempty {
		// Create an empty block based on temporary copied state for sealing in advance without waiting block
		// execution finished.
		w.commit(uncles, nil, false, tstart)
	}

	// Fill the block with all available pending transactions.
	pending, err := w.eth.TxPool().Pending()
	if err != nil {
		log.Error("Failed to fetch pending transactions", "err", err)
		return
	}
	// Short circuit if there is no available pending transactions
	if len(pending) == 0 {
		w.updateSnapshot()
		return
	}
	// Split the pending transactions into locals and remotes
	localTxs, remoteTxs := make(map[common.Address]types.Transactions), pending
	for _, account := range w.eth.TxPool().Locals() {
		if txs := remoteTxs[account]; len(txs) > 0 {
			delete(remoteTxs, account)
			localTxs[account] = txs
		}
	}
	if len(localTxs) > 0 {
		txs := types.NewTransactionsByPriceAndNonce(w.current.signer, localTxs)
		if w.commitTransactions(txs, w.coinbase, interrupt) {
			return
		}
	}
	if len(remoteTxs) > 0 {
		txs := types.NewTransactionsByPriceAndNonce(w.current.signer, remoteTxs)
		if w.commitTransactions(txs, w.coinbase, interrupt) {
			return
		}
	}
	w.commit(uncles, w.fullTaskHook, true, tstart)
}

// commit runs any post-transaction state modifications, assembles the final block
// and commits new work if consensus engine is running.
func (w *worker) commit(uncles []*types.Header, interval func(), update bool, start time.Time) error {
	// Deep copy receipts here to avoid interaction between different tasks.
	receipts := make([]*types.Receipt, len(w.current.receipts))
	for i, l := range w.current.receipts {
		receipts[i] = new(types.Receipt)
		*receipts[i] = *l
	}
	s := w.current.state.Copy()
	block, err := w.engine.FinalizeAndAssemble(w.chain, w.current.header, s, w.current.txs, uncles, w.current.receipts)
	if err != nil {
		return err
	}
	if w.isRunning() {
		if interval != nil {
			interval()
		}
		select {
		case w.taskCh <- &task{receipts: receipts, state: s, block: block, createdAt: time.Now()}:
			w.unconfirmed.Shift(block.NumberU64() - 1)

			feesWei := new(big.Int)
			for i, tx := range block.Transactions() {
				feesWei.Add(feesWei, new(big.Int).Mul(new(big.Int).SetUint64(receipts[i].GasUsed), tx.GasPrice()))
			}
			feesEth := new(big.Float).Quo(new(big.Float).SetInt(feesWei), new(big.Float).SetInt(big.NewInt(params.Ether)))

			log.Info("Commit new mining work", "number", block.Number(), "sealhash", w.engine.SealHash(block.Header()),
				"uncles", len(uncles), "txs", w.current.tcount, "gas", block.GasUsed(), "fees", feesEth, "elapsed", common.PrettyDuration(time.Since(start)))

		case <-w.exitCh:
			log.Info("Worker has exited")
		}
	}
	if update {
		w.updateSnapshot()
	}
	return nil
}