aboutsummaryrefslogblamecommitdiff
path: root/core/vm/contracts.go
blob: 54eab4e092afaea2c82d953d4e1265a5f117b511 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
















































































































































































































































































































































































































































































































                                                                                                                           
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.

package vm

import (
	"crypto/sha256"
	"encoding/binary"
	"errors"
	"math/big"

	"github.com/ava-labs/coreth/params"
	"github.com/ava-labs/go-ethereum/common"
	"github.com/ava-labs/go-ethereum/common/math"
	"github.com/ava-labs/go-ethereum/crypto"
	"github.com/ava-labs/go-ethereum/crypto/blake2b"
	"github.com/ava-labs/go-ethereum/crypto/bn256"
	"golang.org/x/crypto/ripemd160"
)

// PrecompiledContract is the basic interface for native Go contracts. The implementation
// requires a deterministic gas count based on the input size of the Run method of the
// contract.
type PrecompiledContract interface {
	RequiredGas(input []byte) uint64  // RequiredPrice calculates the contract gas use
	Run(input []byte) ([]byte, error) // Run runs the precompiled contract
}

// PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
// contracts used in the Frontier and Homestead releases.
var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
	common.BytesToAddress([]byte{1}): &ecrecover{},
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
	common.BytesToAddress([]byte{4}): &dataCopy{},
}

// PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
// contracts used in the Byzantium release.
var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
	common.BytesToAddress([]byte{1}): &ecrecover{},
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
	common.BytesToAddress([]byte{4}): &dataCopy{},
	common.BytesToAddress([]byte{5}): &bigModExp{},
	common.BytesToAddress([]byte{6}): &bn256AddByzantium{},
	common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{},
	common.BytesToAddress([]byte{8}): &bn256PairingByzantium{},
}

// PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
// contracts used in the Istanbul release.
var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
	common.BytesToAddress([]byte{1}): &ecrecover{},
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
	common.BytesToAddress([]byte{4}): &dataCopy{},
	common.BytesToAddress([]byte{5}): &bigModExp{},
	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
	common.BytesToAddress([]byte{9}): &blake2F{},
}

// RunPrecompiledContract runs and evaluates the output of a precompiled contract.
func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
	gas := p.RequiredGas(input)
	if contract.UseGas(gas) {
		return p.Run(input)
	}
	return nil, ErrOutOfGas
}

// ECRECOVER implemented as a native contract.
type ecrecover struct{}

func (c *ecrecover) RequiredGas(input []byte) uint64 {
	return params.EcrecoverGas
}

func (c *ecrecover) Run(input []byte) ([]byte, error) {
	const ecRecoverInputLength = 128

	input = common.RightPadBytes(input, ecRecoverInputLength)
	// "input" is (hash, v, r, s), each 32 bytes
	// but for ecrecover we want (r, s, v)

	r := new(big.Int).SetBytes(input[64:96])
	s := new(big.Int).SetBytes(input[96:128])
	v := input[63] - 27

	// tighter sig s values input homestead only apply to tx sigs
	if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
		return nil, nil
	}
	// v needs to be at the end for libsecp256k1
	pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v))
	// make sure the public key is a valid one
	if err != nil {
		return nil, nil
	}

	// the first byte of pubkey is bitcoin heritage
	return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
}

// SHA256 implemented as a native contract.
type sha256hash struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *sha256hash) RequiredGas(input []byte) uint64 {
	return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
}
func (c *sha256hash) Run(input []byte) ([]byte, error) {
	h := sha256.Sum256(input)
	return h[:], nil
}

// RIPEMD160 implemented as a native contract.
type ripemd160hash struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
	return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
}
func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
	ripemd := ripemd160.New()
	ripemd.Write(input)
	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
}

// data copy implemented as a native contract.
type dataCopy struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *dataCopy) RequiredGas(input []byte) uint64 {
	return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
}
func (c *dataCopy) Run(in []byte) ([]byte, error) {
	return in, nil
}

// bigModExp implements a native big integer exponential modular operation.
type bigModExp struct{}

var (
	big1      = big.NewInt(1)
	big4      = big.NewInt(4)
	big8      = big.NewInt(8)
	big16     = big.NewInt(16)
	big32     = big.NewInt(32)
	big64     = big.NewInt(64)
	big96     = big.NewInt(96)
	big480    = big.NewInt(480)
	big1024   = big.NewInt(1024)
	big3072   = big.NewInt(3072)
	big199680 = big.NewInt(199680)
)

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bigModExp) RequiredGas(input []byte) uint64 {
	var (
		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
	)
	if len(input) > 96 {
		input = input[96:]
	} else {
		input = input[:0]
	}
	// Retrieve the head 32 bytes of exp for the adjusted exponent length
	var expHead *big.Int
	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
		expHead = new(big.Int)
	} else {
		if expLen.Cmp(big32) > 0 {
			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
		} else {
			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
		}
	}
	// Calculate the adjusted exponent length
	var msb int
	if bitlen := expHead.BitLen(); bitlen > 0 {
		msb = bitlen - 1
	}
	adjExpLen := new(big.Int)
	if expLen.Cmp(big32) > 0 {
		adjExpLen.Sub(expLen, big32)
		adjExpLen.Mul(big8, adjExpLen)
	}
	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))

	// Calculate the gas cost of the operation
	gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
	switch {
	case gas.Cmp(big64) <= 0:
		gas.Mul(gas, gas)
	case gas.Cmp(big1024) <= 0:
		gas = new(big.Int).Add(
			new(big.Int).Div(new(big.Int).Mul(gas, gas), big4),
			new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072),
		)
	default:
		gas = new(big.Int).Add(
			new(big.Int).Div(new(big.Int).Mul(gas, gas), big16),
			new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680),
		)
	}
	gas.Mul(gas, math.BigMax(adjExpLen, big1))
	gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))

	if gas.BitLen() > 64 {
		return math.MaxUint64
	}
	return gas.Uint64()
}

func (c *bigModExp) Run(input []byte) ([]byte, error) {
	var (
		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
	)
	if len(input) > 96 {
		input = input[96:]
	} else {
		input = input[:0]
	}
	// Handle a special case when both the base and mod length is zero
	if baseLen == 0 && modLen == 0 {
		return []byte{}, nil
	}
	// Retrieve the operands and execute the exponentiation
	var (
		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
	)
	if mod.BitLen() == 0 {
		// Modulo 0 is undefined, return zero
		return common.LeftPadBytes([]byte{}, int(modLen)), nil
	}
	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
}

// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newCurvePoint(blob []byte) (*bn256.G1, error) {
	p := new(bn256.G1)
	if _, err := p.Unmarshal(blob); err != nil {
		return nil, err
	}
	return p, nil
}

// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newTwistPoint(blob []byte) (*bn256.G2, error) {
	p := new(bn256.G2)
	if _, err := p.Unmarshal(blob); err != nil {
		return nil, err
	}
	return p, nil
}

// runBn256Add implements the Bn256Add precompile, referenced by both
// Byzantium and Istanbul operations.
func runBn256Add(input []byte) ([]byte, error) {
	x, err := newCurvePoint(getData(input, 0, 64))
	if err != nil {
		return nil, err
	}
	y, err := newCurvePoint(getData(input, 64, 64))
	if err != nil {
		return nil, err
	}
	res := new(bn256.G1)
	res.Add(x, y)
	return res.Marshal(), nil
}

// bn256Add implements a native elliptic curve point addition conforming to
// Istanbul consensus rules.
type bn256AddIstanbul struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
	return params.Bn256AddGasIstanbul
}

func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
	return runBn256Add(input)
}

// bn256AddByzantium implements a native elliptic curve point addition
// conforming to Byzantium consensus rules.
type bn256AddByzantium struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
	return params.Bn256AddGasByzantium
}

func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
	return runBn256Add(input)
}

// runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
// both Byzantium and Istanbul operations.
func runBn256ScalarMul(input []byte) ([]byte, error) {
	p, err := newCurvePoint(getData(input, 0, 64))
	if err != nil {
		return nil, err
	}
	res := new(bn256.G1)
	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
	return res.Marshal(), nil
}

// bn256ScalarMulIstanbul implements a native elliptic curve scalar
// multiplication conforming to Istanbul consensus rules.
type bn256ScalarMulIstanbul struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
	return params.Bn256ScalarMulGasIstanbul
}

func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
	return runBn256ScalarMul(input)
}

// bn256ScalarMulByzantium implements a native elliptic curve scalar
// multiplication conforming to Byzantium consensus rules.
type bn256ScalarMulByzantium struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
	return params.Bn256ScalarMulGasByzantium
}

func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
	return runBn256ScalarMul(input)
}

var (
	// true32Byte is returned if the bn256 pairing check succeeds.
	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}

	// false32Byte is returned if the bn256 pairing check fails.
	false32Byte = make([]byte, 32)

	// errBadPairingInput is returned if the bn256 pairing input is invalid.
	errBadPairingInput = errors.New("bad elliptic curve pairing size")
)

// runBn256Pairing implements the Bn256Pairing precompile, referenced by both
// Byzantium and Istanbul operations.
func runBn256Pairing(input []byte) ([]byte, error) {
	// Handle some corner cases cheaply
	if len(input)%192 > 0 {
		return nil, errBadPairingInput
	}
	// Convert the input into a set of coordinates
	var (
		cs []*bn256.G1
		ts []*bn256.G2
	)
	for i := 0; i < len(input); i += 192 {
		c, err := newCurvePoint(input[i : i+64])
		if err != nil {
			return nil, err
		}
		t, err := newTwistPoint(input[i+64 : i+192])
		if err != nil {
			return nil, err
		}
		cs = append(cs, c)
		ts = append(ts, t)
	}
	// Execute the pairing checks and return the results
	if bn256.PairingCheck(cs, ts) {
		return true32Byte, nil
	}
	return false32Byte, nil
}

// bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
// conforming to Istanbul consensus rules.
type bn256PairingIstanbul struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
	return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
}

func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
	return runBn256Pairing(input)
}

// bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
// conforming to Byzantium consensus rules.
type bn256PairingByzantium struct{}

// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
	return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
}

func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
	return runBn256Pairing(input)
}

type blake2F struct{}

func (c *blake2F) RequiredGas(input []byte) uint64 {
	// If the input is malformed, we can't calculate the gas, return 0 and let the
	// actual call choke and fault.
	if len(input) != blake2FInputLength {
		return 0
	}
	return uint64(binary.BigEndian.Uint32(input[0:4]))
}

const (
	blake2FInputLength        = 213
	blake2FFinalBlockBytes    = byte(1)
	blake2FNonFinalBlockBytes = byte(0)
)

var (
	errBlake2FInvalidInputLength = errors.New("invalid input length")
	errBlake2FInvalidFinalFlag   = errors.New("invalid final flag")
)

func (c *blake2F) Run(input []byte) ([]byte, error) {
	// Make sure the input is valid (correct lenth and final flag)
	if len(input) != blake2FInputLength {
		return nil, errBlake2FInvalidInputLength
	}
	if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
		return nil, errBlake2FInvalidFinalFlag
	}
	// Parse the input into the Blake2b call parameters
	var (
		rounds = binary.BigEndian.Uint32(input[0:4])
		final  = (input[212] == blake2FFinalBlockBytes)

		h [8]uint64
		m [16]uint64
		t [2]uint64
	)
	for i := 0; i < 8; i++ {
		offset := 4 + i*8
		h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
	}
	for i := 0; i < 16; i++ {
		offset := 68 + i*8
		m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
	}
	t[0] = binary.LittleEndian.Uint64(input[196:204])
	t[1] = binary.LittleEndian.Uint64(input[204:212])

	// Execute the compression function, extract and return the result
	blake2b.F(&h, m, t, final, rounds)

	output := make([]byte, 64)
	for i := 0; i < 8; i++ {
		offset := i * 8
		binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
	}
	return output, nil
}