#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include "semantics.h"
#include "ast.h"
#define NEW(type) ((type *)malloc(sizeof(type)))
#define CHECK_TYPE(p, _type) assert(p->type == _type)
#define ERROR(x) do { error_print x; } while (0)
#define WARNING(x) do { warning_print x; } while (0)
#define NOT_IGNORE_VOID(et, ast) \
if (et->type == CVOID) \
do { \
ERROR((ast, "void value not ignored as it ought to be")); \
} while (0)
#define INCOMP_TYPE(ast) \
do { \
ERROR((ast, "incompatible types when assigning")); \
} while (0)
/* pointer to function conversion (std 6.3.2/4) */
/* also convert array to pointer */
#define POINTER_CONV(t, p) \
do { \
if ((t)->type == CFUNC) \
{ \
CType_t f = ctype_create("", CPTR, p); \
f->rec.ref = t; \
t = f; \
} \
else if ((t)->type == CARR) \
{ \
CType_t a = ctype_create("", CPTR, p); \
a->rec.ref = t->rec.arr.elem; \
free(t); \
t = a; \
} \
} while (0)
#define CHECK_CVOID(name, ast) \
if (typespec->type == CVOID) \
do { \
ERROR((ast, "variable or field '%s' declared void", name)); \
} while (0)
#define IS_INT(tt) ((tt) == CINT || (tt) == CCHAR)
#define IS_PTR(tt) ((tt) == CPTR || (tt) == CARR)
#define IS_SCALAR(tt) (!((tt) == CUNION || (tt) == CSTRUCT))
#define IS_ARITH(tt) IS_INT(tt)
extern void print_error(char *, char *, int, int, int);
extern char *load_line(int);
static char err_buff[MAX_ERROR_BUFF];
static CType_t basic_type_int;
static CType_t basic_type_char;
static CType_t basic_type_void;
static CType_t builtin_printf;
static CType_t builtin_scanf;
static CType_t builtin_malloc;
static void error_print(CNode *ast, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
vsprintf(err_buff, fmt, args);
print_error(err_buff, NULL, ast->loc.row, ast->loc.col, 0);
va_end(args);
}
static void warning_print(CNode *ast, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
vsprintf(err_buff, fmt, args);
print_error(err_buff, NULL, ast->loc.row, ast->loc.col, 1);
va_end(args);
}
const char *csymbol_getname(CSymbol_t sym) {
switch (sym->kind)
{
case CVAR: return sym->rec.var->name;
case CTYPE: return sym->rec.type->name;
case CDEF: return sym->rec.def->name;
}
return NULL;
}
#ifdef CIBIC_DEBUG
CTable_t ctable_create(Hashfunc_t hfunc, Printfunc_t pfunc) {
CTable_t ct = NEW(CTable);
memset(ct->head, 0, sizeof(CTNode*) * MAX_TABLE_SIZE);
ct->hfunc = hfunc;
ct->pfunc = pfunc;
return ct;
}
#else
CTable_t ctable_create(Hashfunc_t hfunc) {
CTable_t ct = NEW(CTable);
memset(ct->head, 0, sizeof(CTNode*) * MAX_TABLE_SIZE);
ct->hfunc = hfunc;
return ct;
}
#endif
void ctable_destory(CTable_t ct) {
int i;
for (i = 0; i < MAX_TABLE_SIZE; i++)
{
CTNode *p, *np;
for (p = ct->head[i]; p; p = np)
{
np = p->next;
free(p);
}
}
}
void *ctable_lookup(CTable_t ct, const char *key) {
unsigned int hv = ct->hfunc(key) % MAX_TABLE_SIZE;
CTNode *p = ct->head[hv];
for (; p; p = p->next)
if (!strcmp(p->key, key))
return p->val;
return NULL; /* not found */
}
int ctable_insert(CTable_t ct, const char *key, void *val, int lvl) {
unsigned int hv = ct->hfunc(key) % MAX_TABLE_SIZE;
CTNode *p = ct->head[hv];
CTNode *np;
for (; p && p->lvl == lvl; p = p->next)
if (!strcmp(p->key, key))
return 0; /* conflict */
np = NEW(CTNode);
np->key = key;
np->val = val;
np->lvl = lvl;
np->next = ct->head[hv];
ct->head[hv] = np;
return 1;
}
void ctable_clip(CTable_t ct, const char *key, int max_lvl) {
unsigned int hv = ct->hfunc(key) % MAX_TABLE_SIZE;
CTNode *p = ct->head[hv], *np;
for (; p && p->lvl > max_lvl; p = np)
{
np = p->next;
free(p);
}
ct->head[hv] = p;
}
CScope_t cscope_create() {
CScope_t p = NEW(CScope);
p->lvl = -1;
p->top = NULL;
p->func = NULL;
p->inside_loop = 0;
p->ids = ctable_create(bkdr_hash, csymbol_print);
p->tags = ctable_create(bkdr_hash, csymbol_print);
cscope_enter(p);
return p;
}
static int cscope_push(CScope_t cs, CSymbol_t sym, int nspace) {
CTable_t ct = nspace == NS_ID ? cs->ids : cs->tags;
#ifdef CIBIC_DEBUG
assert(cs->top);
#endif
if (ctable_insert(ct, csymbol_getname(sym), sym, cs->lvl))
{
CSElem *e = NEW(CSElem);
e->sym = sym;
e->next = cs->top->symlist;
cs->top->symlist = e;
return 1;
}
else return 0; /* naming conflict */
}
int cscope_push_var(CScope_t cs, CVar_t var, int nspace) {
CSymbol_t p = NEW(CSymbol);
p->kind = CVAR;
p->rec.var = var;
if (!cscope_push(cs, p, nspace))
{
free(p);
return 0;
}
return 1;
}
int cscope_push_type(CScope_t cs, CType_t type, int nspace) {
CSymbol_t p = NEW(CSymbol);
p->kind = CTYPE;
p->rec.type = type;
if (!cscope_push(cs, p, nspace))
{
free(p);
return 0;
}
return 1;
}
int cscope_push_def(CScope_t cs, CDef_t def, int nspace) {
CSymbol_t p = NEW(CSymbol);
p->kind = CDEF;
p->rec.def = def;
if (!cscope_push(cs, p, nspace))
{
free(p);
return 0;
}
return 1;
}
void cscope_enter(CScope_t cs) {
CSNode *np = NEW(CSNode);
np->next = cs->top;
np->symlist = NULL;
cs->top = np;
cs->lvl++;
}
void cscope_exit(CScope_t cs) {
CSNode *otop = cs->top;
CSElem *p, *np;
cs->lvl--;
cs->top = otop->next;
for (p = otop->symlist; p; p = np)
{
const char *name = csymbol_getname(p->sym);
ctable_clip(cs->ids, name, cs->lvl);
ctable_clip(cs->tags, name, cs->lvl);
np = p->next;
free(p->sym); /* free CSymbol */
free(p); /* free CSElem */
}
free(otop);
}
CSymbol_t cscope_lookup(CScope_t cs, const char *name, int nspace) {
if (nspace == NS_ID)
return ctable_lookup(cs->ids, name);
else
return ctable_lookup(cs->tags, name);
return NULL;
}
unsigned int bkdr_hash(const char *str) {
unsigned int seed = 131;
unsigned int hv = 0;
while (*str)
hv = hv * seed + (unsigned)(*str++);
return hv;
}
CVar_t cvar_create(char *name, CType_t type, CNode *ast) {
CVar_t cv = NEW(CVar);
cv->name = name;
cv->type = type;
cv->ast = ast;
return cv;
}
CType_t ctype_create(char *name, int type, CNode *ast) {
CType_t ct = NEW(CType);
ct->name = name;
ct->type = type;
ct->ast = ast;
ct->size = -1;
return ct;
}
static int align_shift(int x) {
return x + ((4 - (x & 3)) & 3);
}
int calc_size(CType_t type) {
int size = type->size;
if (size != -1) return size;
/* TODO: correct alignment */
switch (type->type)
{
case CINT: size = INT_SIZE; break;
case CCHAR: size = CHAR_SIZE; break;
case CPTR: size = PTR_SIZE; break;
case CARR:
size = type->rec.arr.len * calc_size(type->rec.arr.elem);
break;
case CSTRUCT:
{
size = 0;
CVar_t p = type->rec.st.flist;
if (!p) return -1;
for (; p; p = p->next)
{
p->start = size;
size += align_shift(calc_size(p->type));
}
}
break;
case CUNION:
{
size = 0;
CVar_t p = type->rec.st.flist;
if (!p) return -1;
for (; p; p = p->next)
{
int t = align_shift(calc_size(p->type));
if (t > size) size = t;
p->start = 0;
}
}
break;
case CVOID: return -1;
case CFUNC: return 1;
}
return (type->size = size);
}
static CType_t struct_type_merge(CType_t new, CScope_t scope) {
/* Note: we shall try to lookup first instead of pushing !! */
CSymbol_t lu = cscope_lookup(scope, new->name, NS_TAG);
CType_t old;
if (!lu) /* create it if it does not exist */
{
cscope_push_type(scope, new, NS_TAG);
return new;
} /* otherwise we have it */
old = lu->rec.type;
/* it must be a struct or union */
if (!new->rec.st.fields) /* use the old definition */
return old;
/* otherwise it's a complete definition */
if (cscope_push_type(scope, new, NS_TAG))
return new; /* try to push the defintion */
/* conflict appears */
if (old->rec.st.fields) /* if the old one is complete */
ERROR((new->ast, "redefinition of '%s'", new->name));
/* otherwise incomplete, thus complete the type */
old->rec.st = new->rec.st;
old->ast = new->ast;
free(new);
return old;
}
static void type_merge(CType_t old, CType_t new) {
/* assume old and new are the same type */
assert(old->type == new->type);
switch (old->type)
{
case CINT: case CCHAR: case CPTR:
case CUNION: case CSTRUCT:
break;
case CFUNC:
if (new->rec.func.params)
old->rec.func.params = new->rec.func.params;
if (new->rec.func.body)
{
old->rec.func.local = new->rec.func.local;
old->rec.func.body = new->rec.func.body;
}
break;
default: assert(0);
}
}
int is_same_type(CType_t typea, CType_t typeb) {
if (typea == typeb) return 1;
if (typea->type != typeb->type) return 0;
switch (typea->type)
{
case CSTRUCT: case CUNION:
return typea == typeb;
case CARR:
if (typea->rec.arr.len != typeb->rec.arr.len)
return 0;
return is_same_type(typea->rec.arr.elem, typeb->rec.arr.elem);
case CPTR:
return is_same_type(typea->rec.ref, typeb->rec.ref);
case CFUNC:
{
CVar_t pa = typea->rec.func.params,
pb = typeb->rec.func.params;
if ((pa || typea->rec.func.body) &&
(pb || typeb->rec.func.body))
{
for (;pa && pb; pa = pa->next, pb = pb->next)
if (!is_same_type(pa->type, pb->type))
return 0;
if (pa || pb)
return 0; /* different number of parameters */
}
return is_same_type(typea->rec.func.ret, typeb->rec.func.ret);
}
case CINT: case CCHAR: case CVOID: break;
}
return 1;
}
static CVar_t var_merge(CVar_t new, CScope_t scope) {
CVar_t old;
if (cscope_push_var(scope, new, NS_ID))
return new;
else
old = cscope_lookup(scope, new->name, NS_ID)->rec.var;
if (!is_same_type(old->type, new->type))
ERROR((new->ast, "conflicting types of '%s'", new->name));
else if (scope->lvl)
ERROR((new->ast, "redeclaration of '%s' with no linkage", new->name));
type_merge(old->type, new->type);
free(new);
return old;
}
void semantics_fields(CNode *, CType_t, CScope_t scope);
CType_t semantics_typespec(CNode *p, CScope_t scope) {
CHECK_TYPE(p, TYPE_SPEC);
CType_t type;
switch (p->rec.subtype)
{
case KW_VOID:
type = ctype_create("", CVOID, p); break;
case KW_CHAR:
type = ctype_create("", CCHAR, p); break;
case KW_INT:
type = ctype_create("", CINT, p); break;
case KW_STRUCT: case KW_UNION:
{
CNode *id = p->chd,
*fields = p->chd->next;
type = ctype_create(id->type == NOP ? "" : id->rec.strval,
p->rec.subtype == KW_STRUCT ? CSTRUCT : CUNION,
p);
if (fields->type == NOP)
type->rec.st.fields = NULL; /* incomplete type */
else
semantics_fields(fields, type, scope);
if (id->type != NOP)
type = struct_type_merge(type, scope);
}
break;
case USER_TYPE:
{
CHECK_TYPE(p->chd, ID);
CSymbol_t lu = cscope_lookup(scope, p->chd->rec.strval, NS_ID);
assert(lu && lu->kind == CDEF); /* parser guarantees this */
type = lu->rec.def->type;
}
break;
default: assert(0);
}
return type;
}
int type_is_complete(CType_t type) {
switch(type->type)
{
case CINT: case CCHAR:
/* basic types are always complete */
case CPTR:
/* pointer may point to an incomplete type */
case CARR:
/* syntax of incomplete arrays is not allowed in `cibic.y` */
return 1;
case CSTRUCT: case CUNION:
/* fields are guaranteed to be complete if exists, due to
* `semantics_fields` */
return type->rec.st.fields != NULL;
case CVOID:
/* void type is never complete */
return 0;
case CFUNC:
/* function body is not required here, it is checked in the last
* phase */
return 1;
default: assert(0);
}
return 1;
}
CVar_t semantics_declr(CNode *, CType_t, CScope_t, int);
CVar_t semantics_pdecl(CNode *p, CScope_t scope) {
CHECK_TYPE(p, PLAIN_DECL);
CVar_t var = semantics_declr(p->chd->next,
semantics_typespec(p->chd, scope),
scope, 0);
return var;
}
CVar_t semantics_params(CNode *p, CScope_t scope) {
CHECK_TYPE(p, PARAMS);
static CVar dummy;
CVar_t params = &dummy, tail = params;
CTable_t ct;
if (!(p = p->chd)) return NULL; /* no parameters */
ct = ctable_create(bkdr_hash, ctable_cvar_print);
for (; p; p = p->next)
{
CVar_t var = semantics_pdecl(p, scope);
POINTER_CONV(var->type, p);
if (scope) /* params inside a function definition */
if (!ctable_insert(ct, var->name, var, 0))
ERROR((var->ast, "redefinition of parameter '%s'", var->name));
tail->next = var;
tail = var;
}
ctable_destory(ct);
tail->next = NULL;
return params->next;
}
ExpType semantics_exp(CNode *, CScope_t);
CVar_t semantics_declr(CNode *p, CType_t typespec, CScope_t scope, int flag) {
CVar_t type;
if (p->type == ID)
{
if (!(flag & FLAG_FUNC_CHK)) CHECK_CVOID(p->rec.strval, p);
return cvar_create(p->rec.strval, typespec, p);
}
if (p->type == NOP) /* type name */
return cvar_create(NULL, typespec, p);
switch (p->rec.subtype)
{
case DECLR_FUNC:
{
CType_t func = ctype_create("", CFUNC, p); /* function declr */
if (flag & FLAG_FUNC_DEF) /* function def */
func->rec.func.params = semantics_params(p->chd->next, scope);
else /* function declaration */
{
cscope_enter(scope);
func->rec.func.params = semantics_params(p->chd->next, scope);
cscope_exit(scope);
/* incomplete type */
func->rec.func.local = NULL;
func->rec.func.body = NULL; /* not a definition */
}
func->rec.func.ret = typespec; /* might be an incomplete type */
type = semantics_declr(p->chd, func, scope, flag | FLAG_FUNC_CHK);
if (typespec->type == CARR)
ERROR((p, "'%s' declared as function returning an array",
type->name));
if (typespec->type == CFUNC)
ERROR((p, "'%s' declared as function returing a function",
type->name));
}
break;
case DECLR_ARR:
{
CType_t arr = ctype_create("", CARR, p); /* array declr */
CNode *rch = p->chd->next;
ExpType tl = semantics_exp(rch, scope);
if (calc_size(typespec) == -1)
ERROR((p, "array type has incomplete element type"));
if (!rch->ext.is_const)
ERROR((p, "size of array must be a constant"));
if (!IS_INT(tl.type->type))
ERROR((p, "size of array has non-integer type"));
arr->rec.arr.elem = typespec;
arr->rec.arr.len = rch->ext.const_val;
type = semantics_declr(p->chd, arr, scope, 0);
}
break;
case '*':
{
CType_t ptr = ctype_create("", CPTR, p); /* pointer */
ptr->rec.ref = typespec;
type = semantics_declr(p->chd, ptr, scope, 0);
}
break;
default: assert(0);
}
return type;
}
void semantics_fields(CNode *p, CType_t type, CScope_t scope) {
CTable_t ct = ctable_create(bkdr_hash, ctable_cvar_print);
type->rec.st.fields = ct;
type->rec.st.flist = NULL;
for (p = p->chd; p; p = p->next)
{
CNode *declr = p->chd->next->chd;
for (; declr; declr = declr->next)
{
CVar_t var = semantics_declr(declr,
semantics_typespec(p->chd, scope),
scope, 0);
if (var->type->type == CFUNC)
ERROR((var->ast, "field '%s' declared as a function", var->name));
/* types of fields are supposed to be complete */
if (calc_size(var->type) == -1)
ERROR((var->ast, "field '%s' has incomplete type", var->name));
if (!ctable_insert(ct, var->name, var, 0))
ERROR((p, "duplicate member '%s'", var->name));
var->next = type->rec.st.flist;
type->rec.st.flist = var;
}
}
}
static void exp_check_aseq_(CType_t lhs, CType_t rhs, CNode *ast) {
NOT_IGNORE_VOID(lhs, ast);
NOT_IGNORE_VOID(rhs, ast);
switch (lhs->type)
{
case CSTRUCT: case CUNION:
if (!is_same_type(lhs, rhs))
INCOMP_TYPE(ast);
break;
case CARR: case CFUNC: /* constant */
INCOMP_TYPE(ast);
break;
case CINT: case CCHAR:
switch (rhs->type)
{
case CINT: case CCHAR:
; break; /* ok */
case CPTR: case CARR:
WARNING((ast, "assignment makes integer from pointer without a cast"));
break;
default: INCOMP_TYPE(ast);
}
break;
case CPTR:
switch (rhs->type)
{
case CPTR: case CARR:
if (!is_same_type(lhs->rec.ref, rhs->rec.ref))
WARNING((ast, "assignment from incompatible pointer type"));
break;
case CINT: case CCHAR:
WARNING((ast, "assignment makes pointer from integer without a cast"));
break;
default: INCOMP_TYPE(ast);
}
break;
default: assert(0);
}
}
void semantics_initr(CNode *p, CScope_t scope, CType_t type) {
switch (p->rec.subtype)
{
case INITR_NORM:
{
ExpType et = semantics_exp(p->chd, scope);
if (!scope->lvl && !p->chd->ext.is_const) /* in global scope */
ERROR((p->chd, "initializer element is not constant"));
exp_check_aseq_(type, et.type, p);
}
break;
case INITR_ARR:
{
if (type->type == CARR)
type = type->rec.arr.elem;
else
ERROR((p, "invalid initializer"));
for (p = p->chd; p; p = p->next)
semantics_initr(p, scope, type);
}
break;
}
}
void semantics_typedef(CNode *p, CType_t type, CScope_t scope) {
CNode *declr = p->chd->next;
for (p = declr->chd; p; p = p->next)
{
CVar_t var = semantics_declr(p, type, scope, 0);
CDef_t def = cdef_create(var->name, var->type, var->ast);
if (!cscope_push_def(scope, def, NS_ID))
{
CSymbol_t lu = cscope_lookup(scope, def->name, NS_ID);
if (lu->kind != CDEF)
ERROR((def->ast, "'%s' redeclared as different kind of symbol", def->name));
/* FIXME: `typedef int a()` is different from typedef `int a(int)` */
if (!is_same_type(lu->rec.def->type, def->type))
ERROR((def->ast, "conflicting types of '%s'", def->name));
}
}
}
CVar_t semantics_decl(CNode *p, CScope_t scope) {
CNode *declr = p->chd->next;
CType_t type = semantics_typespec(p->chd, scope);
CVar_t res = NULL;
int useful = 0;
if ((type->type == CSTRUCT || type->type == CUNION) &&
(*type->name) != '\0')
{
cscope_push_type(scope, type, NS_TAG);
useful = 1;
}
if (p->type == TYPEDEF)
{
semantics_typedef(p, type, scope);
return NULL;
}
CHECK_TYPE(p, DECL);
if (declr->chd->type != NOP)
{
CNode *p;
for (p = declr->chd; p; p = p->next)
{
CNode *initr = p->chd->next;
CVar_t var = semantics_declr(p->chd, type, scope, 0);
if (var->type->type == CFUNC)
{
CType_t func = var->type;
CSymbol_t lu;
func->name = var->name;
if (initr->type == INITR)
ERROR((var->ast, "function '%s' is initialized like a variable", func->name));
if (!cscope_push_type(scope, func, NS_ID))
{
lu = cscope_lookup(scope, func->name, NS_ID);
if (lu->kind != CTYPE)
ERROR((func->ast, "'%s' redeclared as different kind of symbol", func->name));
if (!is_same_type(lu->rec.type, func))
ERROR((func->ast, "conflicting types of '%s'", func->name));
type_merge(lu->rec.type, func);
}
}
else
{
if (scope->lvl && calc_size(var->type) == -1)
ERROR((var->ast, "storage size of '%s' isn’t known", var->name));
var = var_merge(var, scope);
var->next = res;
res = var;
/* check initializer */
if (initr->type == INITR)
semantics_initr(initr, scope, var->type);
}
}
useful = 1;
}
if (!useful)
WARNING((type->ast, "useless declaration"));
return res;
}
ExpType exp_check_aseq(ExpType lhs, ExpType rhs, CNode *ast) {
exp_check_aseq_(lhs.type, rhs.type, ast);
lhs.lval = 0;
return lhs;
}
ExpType semantics_cast(CNode *p, CScope_t scope) {
CNode *chd = p->chd->next;
ExpType op = semantics_exp(chd, scope);
CVar_t var = semantics_declr(p->chd->chd->next,
semantics_typespec(p->chd->chd, scope),
scope, 0);
CType_t type = var->type;
free(var);
if (!IS_SCALAR(type->type))
ERROR((p, "conversion to non-scalar type requested"));
if (!IS_SCALAR(op.type->type))
ERROR((p, "aggregate value used where a scalar was expected"));
if (type->type == CARR)
ERROR((p, "cast specifies array type"));
if (type->type == CFUNC)
ERROR((p, "cast specifies function type"));
type->ast = p;
op.type = type;
op.lval = 0;
if ((p->ext.is_const &= !IS_INT(type->type)))
{
p->ext.const_val = chd->ext.const_val;
}
return op;
}
ExpType exp_check_arith(ExpType op1, ExpType op2, CNode *p, char kind) {
CNode *lch = p->chd,
*rch = lch->next;
int t1 = op1.type->type,
t2 = op2.type->type;
ExpType res;
NOT_IGNORE_VOID(op1.type, p);
NOT_IGNORE_VOID(op2.type, p);
res.lval = 0;
res.type = basic_type_int;
if ((p->ext.is_const = lch->ext.is_const && rch->ext.is_const))
{
int l = lch->ext.const_val,
r = rch->ext.const_val,
*a = &(p->ext.const_val);
switch (kind)
{
case '*': *a = l * r; break;
case '/': *a = l / r; break;
case '%': *a = l % r; break;
}
}
if (!(IS_ARITH(t1) && IS_ARITH(t2)))
ERROR((p, "invalid operands to binary operator"));
return res;
}
ExpType exp_check_bitwise(ExpType op1, ExpType op2, CNode *p, char kind) {
CNode *lch = p->chd,
*rch = lch->next;
int t1 = op1.type->type,
t2 = op2.type->type;
ExpType res;
NOT_IGNORE_VOID(op1.type, p);
NOT_IGNORE_VOID(op2.type, p);
res.lval = 0;
res.type = basic_type_int;
if ((p->ext.is_const = lch->ext.is_const && rch->ext.is_const))
{
int l = lch->ext.const_val,
r = rch->ext.const_val,
*a = &(p->ext.const_val);
switch (kind)
{
case 'l': *a = l << r; break;
case 'r': *a = l >> r; break;
case '&': *a = l & r; break;
case '|': *a = l | r; break;
case '^': *a = l ^ r; break;
}
}
if (!(IS_INT(t1) && IS_INT(t2)))
ERROR((p, "invalid operands to binary operator"));
return res;
}
ExpType exp_check_add(ExpType op1, ExpType op2, CNode *p, char kind) {
CNode *lch = p->chd,
*rch = lch->next;
int t1 = op1.type->type,
t2 = op2.type->type;
NOT_IGNORE_VOID(op1.type, p);
NOT_IGNORE_VOID(op2.type, p);
if (kind == '+' && IS_PTR(t2))
{
/* place the pointer type in the first place */
int t = t1;
ExpType te = op1;
t1 = t2;
t2 = t;
op1 = op2;
op2 = te;
CNode *n1 = p->chd;
CNode *n2 = n1->next;
n2->next = n1;
n1->next = NULL;
p->chd = n2;
}
if (t1 == CPTR && calc_size(op1.type->rec.ref) == -1)
ERROR((p, "invalid use of undefined type"));
if (t2 == CPTR && calc_size(op2.type->rec.ref) == -1)
ERROR((p, "invalid use of undefined type"));
if (kind == '-')
{
if (IS_PTR(t2) && !IS_PTR(t1))
ERROR((p, "invalid operands to binary operator"));
}
else
{
if (!((IS_INT(t1) || IS_PTR(t1)) && IS_INT(t2)))
ERROR((p, "invalid operands to binary operator"));
}
if ((p->ext.is_const = lch->ext.is_const && rch->ext.is_const))
{
int r = rch->ext.const_val,
*a = &(p->ext.const_val);
if (t1 == CARR)
{
int l = p->chd->ext.offset;
CType_t type;
p->ext.var = p->chd->ext.var;
if (t1 == CPTR) type = op1.type->rec.ref;
else type = op1.type->rec.arr.elem;
r *= calc_size(type);
switch (kind)
{
case '+': p->ext.offset = l + r; break;
case '-': p->ext.offset = l - r; break;
}
}
else
{
int l = lch->ext.const_val;
switch (kind)
{
case '+': *a = l + r; break;
case '-': *a = l - r; break;
}
}
}
op1.lval = 0;
return op1; /* int or pointer */
}
ExpType exp_check_int(ExpType op1, CNode *p) {
if (!IS_INT(op1.type->type))
ERROR((p, "wrong type argument to unary operator"));
op1.lval = 0;
return op1;
}
ExpType exp_check_scalar(ExpType op1, CNode *p) {
if (!IS_SCALAR(op1.type->type))
ERROR((p, "wrong type argument to unary operator"));
op1.lval = 0;
return op1;
}
ExpType exp_check_deref(ExpType op1, CNode *p) {
if (!IS_PTR(op1.type->type))
ERROR((p, "invalid type argument of unary '*'"));
if (op1.type->rec.ref->type == CFUNC)
return op1;
op1.lval = 1; /* deref changes exp to lval */
if (calc_size(op1.type = op1.type->rec.ref) == -1)
ERROR((p, "dereferencing pointer to incomplete type"));
return op1;
}
ExpType exp_check_ref(ExpType op1, CNode *p) {
ExpType res;
CType_t t = op1.type;
if (t->type == CARR || (t->type == CPTR && t->rec.ref->type == CFUNC))
return op1;
if (!op1.lval)
ERROR((p, "lvalue required as unary '&' operand"));
/* TODO: constant pointer folding */
p->ext.is_const = 0;
/* should be constant */
res.lval = 0;
res.type = ctype_create("", CPTR, p);
res.type->rec.ref = op1.type;
return res;
}
ExpType exp_check_sizeof(CNode *p, CScope_t scope) {
ExpType res, sub;
if (p->chd->type == DECLR)
{
CVar_t abs_declr = semantics_declr(
p->chd->chd->next,
semantics_typespec(p->chd->chd, scope),
scope, 0);
sub.type = abs_declr->type;
free(abs_declr);
}
else
sub = semantics_exp(p->chd, scope);
res.lval = 0;
res.type = basic_type_int;
p->ext.const_val = calc_size(sub.type);
p->ext.is_const = 1;
return res;
}
ExpType exp_check_inc(ExpType op1, CNode *p) {
if (!IS_SCALAR(op1.type->type))
ERROR((p, "wrong type argument to increment/decrement"));
if (!op1.lval)
ERROR((p, "lvalue required as increment/decrement operand"));
op1.lval = 0;
return op1;
}
ExpType exp_check_logical(ExpType op1, ExpType op2, CNode *p, char kind) {
CNode *lch = p->chd,
*rch = lch->next;
int t1 = op1.type->type,
t2 = op2.type->type;
ExpType res;
NOT_IGNORE_VOID(op1.type, p);
NOT_IGNORE_VOID(op2.type, p);
res.lval = 0;
res.type = basic_type_int;
if ((p->ext.is_const = lch->ext.is_const && rch->ext.is_const))
{
int l = lch->ext.const_val,
r = rch->ext.const_val,
*a = &(p->ext.const_val);
switch (kind)
{
case '&': *a = l && r; break;
case '|': *a = l || r; break;
}
}
if (!(IS_SCALAR(t1) && IS_SCALAR(t2)))
ERROR((p, "invalid operands to binary operator"));
return res;
}
ExpType exp_check_ass(ExpType lhs, ExpType rhs, CNode *p) {
NOT_IGNORE_VOID(lhs.type, p);
NOT_IGNORE_VOID(rhs.type, p);
if (!lhs.lval)
ERROR((p, "lvalue required as left operand of assignment"));
switch (p->rec.subtype)
{
case '=' : return exp_check_aseq(lhs, rhs, p);
case ASS_MUL: return exp_check_aseq(lhs, exp_check_arith(lhs, rhs, p, '*'), p);
case ASS_DIV: return exp_check_aseq(lhs, exp_check_arith(lhs, rhs, p, '/'), p);
case ASS_MOD: return exp_check_aseq(lhs, exp_check_arith(lhs, rhs, p, '%'), p);
case ASS_ADD: return exp_check_aseq(lhs, exp_check_add(lhs, rhs, p, '+'), p);
case ASS_SUB: return exp_check_aseq(lhs, exp_check_add(lhs, rhs, p, '-'), p);
case ASS_SHL: return exp_check_aseq(lhs, exp_check_bitwise(lhs, rhs, p, 'l'), p);
case ASS_SHR: return exp_check_aseq(lhs, exp_check_bitwise(lhs, rhs, p, 'r'), p);
case ASS_AND: return exp_check_aseq(lhs, exp_check_bitwise(lhs, rhs, p, '&'), p);
case ASS_XOR: return exp_check_aseq(lhs, exp_check_bitwise(lhs, rhs, p, '^'), p);
case ASS_OR: return exp_check_aseq(lhs, exp_check_bitwise(lhs, rhs, p, '|'), p);
default: assert(0);
}
}
ExpType exp_check_equality(ExpType op1, ExpType op2, CNode *p, int kind) {
CNode *lch = p->chd,
*rch = lch->next;
int t1 = op1.type->type,
t2 = op2.type->type;
ExpType res;
NOT_IGNORE_VOID(op1.type, p);
NOT_IGNORE_VOID(op2.type, p);
res.lval = 0;
res.type = basic_type_int;
if ((p->ext.is_const = lch->ext.is_const && rch->ext.is_const))
{
int l = lch->ext.const_val,
r = rch->ext.const_val,
*a = &(p->ext.const_val);
switch (kind)
{
case OPT_EQ: *a = l == r; break;
case OPT_NE: *a = l != r; break;
case '>': *a = l > r; break;
case '<': *a = l < r; break;
case OPT_LE: *a = l <= r; break;
case OPT_GE: *a = l >= r; break;
}
}
if (IS_ARITH(t1) && IS_ARITH(t2))
return res;
if (!(IS_SCALAR(t1) && IS_SCALAR(t2)))
ERROR((p, "invalid operands to binary operator"));
if (IS_PTR(t1) && IS_PTR(t2))
{
if (!is_same_type(op1.type->rec.ref, op2.type->rec.ref))
WARNING((p, "comparison of distinct pointer types lacks a cast"));
}
else if (IS_PTR(t1) || IS_PTR(t2))
WARNING((p, "comparison between pointer and integer"));
return res;
}
ExpType exp_check_postfix(CNode *p, CScope_t scope) {
CNode *post = p->chd->next;
ExpType op1 = semantics_exp(p->chd, scope), op2;
int t1 = op1.type->type, t2;
switch (post->rec.subtype)
{
case POSTFIX_ARR:
if (!IS_PTR(t1))
ERROR((p, "subscripted value is neither array nor pointer"));
op2 = semantics_exp(post->chd, scope);
t2 = op2.type->type;
if (!IS_INT(t2))
ERROR((p, "array subscript is not an integer"));
p->ext.is_const = 0;
if (t1 == CARR)
{
op1.type = op1.type->rec.arr.elem;
if ((p->ext.is_const = p->chd->ext.is_const && \
post->chd->ext.is_const))
{
p->ext.offset = p->chd->ext.offset + \
calc_size(op1.type) * post->chd->ext.const_val;
p->ext.var = p->chd->ext.var;
}
}
else
op1.type = op1.type->rec.ref;
op1.lval = 1;
break;
case POSTFIX_CALL:
if (!(t1 == CPTR && op1.type->rec.ref->type == CFUNC))
ERROR((p, "called object is not a function"));
{
CNode *arg = post->chd->chd, *t;
CType_t func = p->chd->ext.type;
CVar_t param;
/* pointer to function */
if (func->type == CPTR) func = func->rec.ref;
for (t = arg; t; t = t->next)
semantics_exp(t, scope);
if ((param = func->rec.func.params))
{
for (; arg && param;
arg = arg->next, param = param->next)
exp_check_aseq_(param->type, arg->ext.type, arg);
if (arg || param)
ERROR((p, "too many/few arguments to the function"));
}
op1.type = func->rec.func.ret;
op1.lval = 0;
break;
}
case POSTFIX_DOT:
if (!(t1 == CSTRUCT || t1 == CUNION))
ERROR((p, "request for the member in something not a structure or union"));
{
CVar_t fv = ctable_lookup(op1.type->rec.st.fields,
post->chd->rec.strval);
if (!fv)
ERROR((p, "struct/union has no member named '%s'", post->chd->rec.strval));
p->ext.var = NULL;
p->ext.offset = fv->start;
op1.type = fv->type;
}
break;
case POSTFIX_PTR:
if (t1 != CPTR)
ERROR((p, "invalid type argument of '->'"));
{
CType_t tref = op1.type->rec.ref;
if (!(tref->type == CSTRUCT || tref->type == CUNION))
ERROR((p, "request for the member in something not a structure or union"));
if (!tref->rec.st.fields)
ERROR((p, "dereferencing pointer to incomplete type"));
calc_size(tref);
CVar_t fv = ctable_lookup(tref->rec.st.fields,
post->chd->rec.strval);
if (!fv)
ERROR((p, "struct/union has no member named '%s'", post->chd->rec.strval));
p->ext.var = fv;
p->ext.offset = fv->start;
op1.type = fv->type;
op1.lval = 1;
}
break;
case OPT_INC: case OPT_DEC:
op1 = exp_check_inc(op1, p);
break;
default: assert(0);
}
return op1;
}
ExpType semantics_exp(CNode *p, CScope_t scope) {
ExpType res;
switch (p->type)
{
case ID:
{
CSymbol_t lu = cscope_lookup(scope, p->rec.strval, NS_ID);
if (!lu) ERROR((p, "'%s' undeclared", p->rec.strval));
if (lu->kind == CVAR)
{
p->ext.var = lu->rec.var;
res.type = p->ext.var->type;
res.lval = res.type->type != CARR;
}
else
{
p->ext.type = lu->rec.type;
res.type = p->ext.type;
res.lval = res.type->type == CFUNC;
POINTER_CONV(res.type, p);
p->ext.var = cvar_create(p->ext.type->name, res.type, NULL);
}
p->ext.is_const = 0; /* res.type->type == CARR ||
res.type->type == CFUNC; */
}
break;
case INT:
res.type = basic_type_int;
res.lval = 0;
p->ext.is_const = 1;
p->ext.const_val = p->rec.intval;
break;
case CHAR:
res.type = basic_type_char;
res.lval = 0;
p->ext.is_const = 1;
p->ext.const_val = p->rec.intval;
break;
case STR:
{
CType_t type = ctype_create("", CPTR, NULL);
type->rec.ref = basic_type_char;
res.type = type;
res.lval = 0;
p->ext.is_const = 1;
/* TODO: to be filled with address */
}
break;
case EXP:
{
ExpType op1;
ExpType op2;
switch (p->rec.subtype)
{
case EXP_CAST:
res = semantics_cast(p, scope);
break;
case EXP_POSTFIX:
res = exp_check_postfix(p, scope);
break;
case KW_SIZEOF:
res = exp_check_sizeof(p, scope);
break;
default:
{
op1 = semantics_exp(p->chd, scope);
if (p->chd->next)
op2 = semantics_exp(p->chd->next, scope);
switch (p->rec.subtype)
{
/* following cases are binary expressions */
case ',':
res = op2;
res.lval = 0;
break;
case '=' :
case ASS_MUL:
case ASS_DIV:
case ASS_MOD:
case ASS_ADD:
case ASS_SUB:
case ASS_SHL:
case ASS_SHR:
case ASS_AND:
case ASS_XOR:
case ASS_OR:
res = exp_check_ass(op1, op2, p);
break;
case OPT_OR:
res = exp_check_logical(op1, op2, p, '|');
break;
case OPT_AND:
res = exp_check_logical(op1, op2, p, '&');
break;
case OPT_SHL:
case OPT_SHR:
case '|':
case '^':
res = exp_check_bitwise(op1, op2, p, p->rec.subtype);
break;
case OPT_EQ:
case OPT_NE:
case '<':
case '>' :
case OPT_LE:
case OPT_GE:
res = exp_check_equality(op1, op2, p, p->rec.subtype);
break;
case '/':
case '%':
res = exp_check_arith(op1, op2, p, p->rec.subtype);
break;
case '&':
if (p->chd->next)
res = exp_check_bitwise(op1, op2, p, '&');
else
res = exp_check_ref(op1, p);
break;
case '*':
if (p->chd->next)
res = exp_check_arith(op1, op2, p, '*');
else
res = exp_check_deref(op1, p);
break;
case '+':
if (p->chd->next)
res = exp_check_add(op1, op2, p, '+');
else
{
res = op1;
res.lval = 0;
}
break;
case '-':
if (p->chd->next)
res = exp_check_add(op1, op2, p, '-');
else
{
res = op1;
res.lval = 0;
}
break;
case '~':
res = exp_check_int(op1, p);
break;
case '!':
res = exp_check_scalar(op1, p);
break;
case OPT_INC: case OPT_DEC:
res = exp_check_inc(op1, p);
break;
default:
printf("%d\n", p->rec.subtype);
assert(0);
}
}
}
}
break;
case NOP: ; break;
default: assert(0);
}
p->ext.type = res.type;
return res;
}
CVar_t semantics_stmt(CNode *p, CScope_t scope);
CVar_t semantics_if(CNode *p, CScope_t scope) {
ExpType exp = semantics_exp(p->chd, scope);
CNode *body1 = p->chd->next,
*body2 = body1->next;
CVar_t res;
if (!IS_SCALAR(exp.type->type))
ERROR((p->chd, "a scalar is required in 'if' condition"));
cscope_enter(scope);
res = semantics_stmt(body1, scope);
cscope_exit(scope);
if (body2->type != NOP)
{
CVar_t t;
cscope_enter(scope);
if ((t = semantics_stmt(p->chd->next->next, scope)))
{
t->next = res;
res = t;
}
cscope_exit(scope);
}
return res;
}
CVar_t semantics_for(CNode *p, CScope_t scope) {
ExpType exp = semantics_exp(p->chd->next, scope);
semantics_exp(p->chd, scope);
semantics_exp(p->chd->next->next, scope);
CVar_t res;
if (p->chd->next->type != NOP && !IS_SCALAR(exp.type->type))
ERROR((p->chd->next, "a scalar is required in 'for' condition"));
cscope_enter(scope);
scope->inside_loop++;
res = semantics_stmt(p->chd->next->next->next, scope);
scope->inside_loop--;
cscope_exit(scope);
return res;
}
CVar_t semantics_while(CNode *p, CScope_t scope) {
ExpType exp = semantics_exp(p->chd, scope);
CVar_t res;
if (!IS_SCALAR(exp.type->type))
ERROR((p->chd, "a scalar is required in 'while' condition"));
cscope_enter(scope);
scope->inside_loop++;
res = semantics_stmt(p->chd->next, scope);
scope->inside_loop--;
cscope_exit(scope);
return res;
}
CVar_t semantics_check_loop(CNode *p, CScope_t scope, const char *stmt_name) {
if (!scope->inside_loop)
ERROR((p, "%s statement not within a loop", stmt_name));
return NULL;
}
CVar_t semantics_return(CNode *p, CScope_t scope) {
assert(scope->func);
CType_t rt = scope->func->rec.func.ret;
if (p->chd->type != NOP)
{
ExpType t = semantics_exp(p->chd, scope);
if (rt->type == CVOID)
{
if (t.type->type != CVOID)
WARNING((p->chd, "'return' with a value, in function returning void"));
}
else
exp_check_aseq_(rt, p->chd->ext.type, p->chd);
}
return NULL;
}
CVar_t semantics_comp(CNode *, CScope_t);
CVar_t semantics_stmt(CNode *p, CScope_t scope) {
CHECK_TYPE(p, STMT);
switch (p->rec.subtype)
{
case STMT_EXP:
semantics_exp(p->chd, scope);
break;
case STMT_COMP:
{
CVar_t res;
cscope_enter(scope);
res = semantics_comp(p, scope);
cscope_exit(scope);
return res;
}
case STMT_IF:
return semantics_if(p, scope);
case STMT_FOR:
return semantics_for(p, scope);
case STMT_WHILE:
return semantics_while(p, scope);
case STMT_CONT:
return semantics_check_loop(p, scope, "continue");
case STMT_BREAK:
return semantics_check_loop(p, scope, "break");
case STMT_RET:
return semantics_return(p, scope);
default: assert(0);
}
return NULL;
}
CVar_t semantics_comp(CNode *p, CScope_t scope) {
CNode *decls = p->chd,
*stmts = p->chd->next, *i;
CVar_t res = NULL;
if (decls->chd->type != NOP)
for (i = decls->chd; i; i = i->next)
{
CVar_t vlist = semantics_decl(i, scope);
if (vlist) /* collect local vars */
{
CVar_t p;
for (p = vlist; p->next; p = p->next);
p->next = res;
res = vlist;
}
}
if (stmts->chd->type != NOP)
for (i = stmts->chd; i; i = i->next)
{
CVar_t vlist = semantics_stmt(i, scope);
if (vlist) /* collect nested local vars */
{
CVar_t p;
for (p = vlist; p->next; p = p->next);
p->next = res;
res = vlist;
}
}
return res;
}
CType_t semantics_func(CNode *p, CScope_t scope) {
CHECK_TYPE(p, FUNC_DEF);
CVar_t head;
CType_t func, efunc, rt;
cscope_enter(scope); /* enter function local scope */
head = semantics_declr(p->chd->next,
semantics_typespec(p->chd, scope),
scope, FLAG_FUNC_DEF);
func = head->type;
rt = func->rec.func.ret;
if (rt->type != CVOID && calc_size(rt) == -1)
ERROR((func->rec.func.ret->ast, "return type is an incomplete type"));
func->rec.func.body = p->chd->next->next;
func->name = head->name;
scope->func = func;
free(head);
{ /* Note: here is a dirty hack to forcibly push function definition to
the global scope, while all the types specified in parameters retain in local scope.
The key point is to make sure semantics_params does not push any var */
CSNode *ntop = scope->top;
CVar_t var;
scope->top = ntop->next;
scope->lvl--;
if (!cscope_push_type(scope, func, NS_ID))
{
CSymbol_t lu = cscope_lookup(scope, func->name, NS_ID);
if (lu->kind != CTYPE)
ERROR((func->ast, "'%s' redeclared as different kind of symbol", func->name));
efunc = lu->rec.type;
if (efunc->type != CFUNC)
ERROR((func->ast, "conflicting types of '%s'", func->name));
else if (efunc->rec.func.body)
ERROR((func->ast, "redefintion of function '%s'", func->name));
else if (!is_same_type(efunc, func))
ERROR((func->ast, "function defintion does not match the prototype"));
type_merge(efunc, func);
free(func);
}
scope->top = ntop;
scope->lvl++;
for (var = func->rec.func.params; var; var = var->next)
{
cscope_push_var(scope, var, NS_ID);
if (calc_size(var->type) == -1)
ERROR((var->ast, "parameter '%s' has incomplete type", var->name));
}
}
func->rec.func.local = semantics_comp(p->chd->next->next, scope); /* check comp */
cscope_exit(scope); /* exit from local scope */
return func;
}
CType_t make_builtin_func(char *name, CType_t rt) {
CType_t func = ctype_create(name, CFUNC, NULL);
func->rec.func.params = NULL;
func->rec.func.body = NULL;
func->rec.func.local = NULL;
func->rec.func.ret = rt;
return func;
}
typedef struct DNode DNode;
CScope_t typedef_scope;
struct DNode{
enum DefState kind;
DNode *next;
} *typedef_stack;
void cibic_init() {
typedef_scope = cscope_create();
typedef_stack = NULL;
}
int is_identifier(const char *name) {
CSymbol_t lu;
if (typedef_stack)
{
/* struct tag */
/* the parser is reading declarators */
if (typedef_stack->kind == FORCE_ID) return 1;
/* the parser is reading typedef */
if (typedef_stack->kind == IN_TYPEDEF) return 1;
/* no info about name, assume it to be an id by default */
}
lu = cscope_lookup(typedef_scope, name, NS_ID);
if (!lu) return 1;
return lu->kind == CVAR;
}
void push(char *name) {
if (typedef_stack && typedef_stack->kind == IN_TYPEDEF)
cscope_push_type(typedef_scope, ctype_create(name, 0, NULL), NS_ID);
else
cscope_push_var(typedef_scope, cvar_create(name, NULL, NULL), NS_ID);
}
CDef_t cdef_create(const char *name, CType_t type, CNode *ast) {
CDef_t cd = NEW(CDef);
cd->name = name;
cd->type = type;
cd->ast = ast;
return cd;
}
void def_enter(enum DefState kind) {
DNode *ntop = NEW(DNode);
ntop->kind = kind;
ntop->next = typedef_stack;
typedef_stack = ntop;
}
void def_exit() {
DNode *ntop = typedef_stack->next;
free(typedef_stack);
typedef_stack = ntop;
}
void block_enter() { cscope_enter(typedef_scope); }
void block_exit() { cscope_exit(typedef_scope); }
void ctable_debug_print(CTable_t ct) {
int i;
fprintf(stderr, "*** CTable ***\n");
for (i = 0; i < MAX_TABLE_SIZE; i++)
if (ct->head[i])
{
CTNode *p;
fprintf(stderr, "[%04d]", i);
for (p = ct->head[i]; p; p = p->next)
fprintf(stderr, "->[%s:%d]", ct->pfunc(p->val), p->lvl);
fprintf(stderr, "\n");
}
fprintf(stderr, "*** CTable ***\n");
}
void cscope_debug_print(CScope_t cs) {
int lvl = cs->lvl;
CSNode *p;
CSElem *tp;
fprintf(stderr, "\n****** CScope ******\n");
for (p = cs->top; p; p = p->next)
{
fprintf(stderr, "Level %d:\n", lvl--);
for (tp = p->symlist; tp; tp = tp->next)
fprintf(stderr, "%s ", csymbol_print(tp->sym));
fprintf(stderr, "\n\n");
}
fprintf(stderr, "IDs:\n");
ctable_debug_print(cs->ids);
fprintf(stderr, "Tags:\n");
ctable_debug_print(cs->tags);
fprintf(stderr, "****** CScope ******\n\n");
}
const char *ctable_cvar_print(void *var) {
static char buff[MAX_DEBUG_PRINT_BUFF];
sprintf(buff, "%s@%lx", ((CVar_t )var)->name, (size_t)var);
return buff;
}
const char *csymbol_print(void *csym) {
CSymbol_t p = (CSymbol_t)csym;
static char buff[MAX_DEBUG_PRINT_BUFF];
switch (p->kind)
{
case CVAR:
sprintf(buff, "%s@%lx", p->rec.var->name, (size_t)p->rec.var);
break;
case CTYPE:
sprintf(buff, "%s@%lx", p->rec.type->name, (size_t)p->rec.type);
break;
case CDEF:
sprintf(buff, "%s@%lx", p->rec.def->name, (size_t)p->rec.def);
}
return buff;
}
void ctype_print_(CType_t, int lvl);
void print_tabs(int tnum) { while (tnum--) fprintf(stderr, " "); }
void ctype_pre_(CType_t type, int lvl) {
int t= type->type;
if (t == CARR || t == CFUNC || t == CUNION || t == CSTRUCT)
{
fprintf(stderr, "\n");
print_tabs(lvl);
}
}
void cvar_print_(CVar_t cv, int lvl) {
fprintf(stderr, "[var@%lx:%s :: ", (size_t)cv, cv->name);
ctype_pre_(cv->type, ++lvl);
ctype_print_(cv->type, lvl);
fprintf(stderr, "]");
}
void cdef_print_(CDef_t cd, int lvl) {
fprintf(stderr, "[def@%lx:%s :: ", (size_t)cd, cd->name);
ctype_pre_(cd->type, ++lvl);
ctype_print_(cd->type, lvl);
fprintf(stderr, "]");
}
void ctype_print_(CType_t ct, int lvl) {
switch (ct->type)
{
case CINT:
fprintf(stderr, "[int]"); break;
case CCHAR:
fprintf(stderr, "[char]"); break;
case CVOID:
fprintf(stderr, "[void]"); break;
case CSTRUCT:
case CUNION:
{
CTable_t f = ct->rec.st.fields;
int i;
CTNode *fn;
lvl++;
fprintf(stderr, "[%s@%lx:{name:%s}{size:%d}",
ct->type == CSTRUCT ? "struct" : "union",
(size_t)ct, ct->name, ct->size);
fprintf(stderr, "{fields:");
if (f)
{
fprintf(stderr, "\n");
int first = 1;
for (i = 0; i < MAX_TABLE_SIZE; i++)
for (fn = f->head[i]; fn; fn = fn->next)
{
fprintf(stderr, "%s", first ? (first = 0, "") : ",\n");
print_tabs(lvl);
cvar_print_((CVar_t)fn->val, lvl);
}
}
fprintf(stderr, "}]");
}
break;
case CARR:
{
CType_t type = ct->rec.arr.elem;
fprintf(stderr, "[arr:{len:%d}{size:%d}]->",
ct->rec.arr.len, ct->size);
ctype_pre_(type, ++lvl);
ctype_print_(type, lvl);
}
break;
case CPTR:
{
CType_t type = ct->rec.ref;
fprintf(stderr, "[ptr]->");
ctype_pre_(type, ++lvl);
ctype_print_(type, lvl);
}
break;
case CFUNC:
{
CType_t type = ct->rec.func.ret;
CVar_t p;
lvl++;
fprintf(stderr, "[func:{name:%s}{size:%d}\n",
ct->name, ct->size);
print_tabs(lvl);
fprintf(stderr, "{params:");
if (ct->rec.func.params)
{
fprintf(stderr, "\n");
for (p = ct->rec.func.params; p; p = p->next)
{
print_tabs(lvl + 1);
cvar_print_(p, lvl + 1);
if (p->next) fprintf(stderr, ",\n");
}
}
/* print_tabs(lvl); */
fprintf(stderr, "}\n");
print_tabs(lvl);
fprintf(stderr, "{local:");
if (ct->rec.func.local)
{
fprintf(stderr, "\n");
for (p = ct->rec.func.local; p; p = p->next)
{
print_tabs(lvl + 1);
cvar_print_(p, lvl + 1);
if (p->next) fprintf(stderr, ",\n");
}
}
fprintf(stderr, "}]->");
ctype_pre_(type, lvl);
ctype_print_(type, lvl);
}
break;
}
}
void ctype_print(CType_t ct) { ctype_print_(ct, 0); }
void cvar_print(CVar_t cv) { cvar_print_(cv, 0); }
void cdef_print(CDef_t cd) { cdef_print_(cd, 0); }
CScope_t semantics_check(CNode *p) {
CScope_t scope = cscope_create();
basic_type_int = ctype_create("int", CINT, NULL);
basic_type_char = ctype_create("char", CCHAR, NULL);
basic_type_void = ctype_create("void", CVOID, NULL);
builtin_printf = make_builtin_func("printf", basic_type_int);
builtin_scanf = make_builtin_func("scanf", basic_type_int);
{
CType_t vstar = ctype_create("", CPTR, NULL);
vstar->rec.ref = basic_type_void;
builtin_malloc = make_builtin_func("malloc", vstar);
}
/* add top-level basic types */
cscope_push_type(scope, basic_type_int, NS_ID);
cscope_push_type(scope, basic_type_char, NS_ID);
cscope_push_type(scope, basic_type_void, NS_ID);
cscope_push_type(scope, builtin_printf, NS_ID);
cscope_push_type(scope, builtin_scanf, NS_ID);
cscope_push_type(scope, builtin_malloc, NS_ID);
/* check all definitions and declarations */
for (p = p->chd; p; p = p->next)
{
switch (p->type)
{
case FUNC_DEF:
semantics_func(p, scope); break;
case DECL: case TYPEDEF:
semantics_decl(p, scope); break;
default: assert(0);
}
}
cscope_debug_print(scope);
{
CTNode *p;
int i;
for (i = 0; i < MAX_TABLE_SIZE; i++)
for (p = scope->ids->head[i]; p; p = p->next)
{
CSymbol_t tp = (CSymbol_t)(p->val);
switch (tp->kind)
{
case CVAR:
if (calc_size(tp->rec.var->type) == -1)
ERROR((tp->rec.var->ast, "storage size of ‘a’ isn’t known"));
cvar_print(tp->rec.var);
break;
case CTYPE: ctype_print(tp->rec.type); break;
case CDEF: cdef_print(tp->rec.def); break;
}
fprintf(stderr, "\n\n");
}
}
cnode_debug_print(ast_root, 1);
return scope;
}