package salticidae // #include "salticidae/event.h" // #include import "C" import "runtime" // The C pointer type for an EventContext handle. type CEventContext = *C.eventcontext_t type eventContext struct { inner CEventContext attached map[uintptr]interface{} } // The handle for an event loop. type EventContext = *eventContext func NewEventContext() EventContext { res := &eventContext{ inner: C.eventcontext_new(), attached: make(map[uintptr]interface{}), } runtime.SetFinalizer(res, func(self EventContext) { self.free() }) return res } func (self EventContext) attach(ptr rawptr_t, x interface{}) { self.attached[uintptr(ptr)] = x } func (self EventContext) detach(ptr rawptr_t) { delete(self.attached, uintptr(ptr)) } func (self EventContext) free() { C.eventcontext_free(self.inner) } // Start the event loop. This is a blocking call that will hand over the // control flow to the infinite loop which triggers callbacks upon new events. // The function will return when Stop() is called. func (self EventContext) Dispatch() { C.eventcontext_dispatch(self.inner) } // Stop the event loop. This function is typically called in a callback. Notice // that all methods of an EventContext should be invoked by the same thread // which logically owns the loop. To schedule code executed in the event loop // of a particular thread, see ThreadCall. func (self EventContext) Stop() { C.eventcontext_stop(self.inner) } // The C pointer type for a ThreadCall handle. type CThreadCall = *C.threadcall_t type threadCall struct { inner CThreadCall } // The handle for scheduling a function call executed by a particular // EventContext event loop. type ThreadCall = *threadCall // The C function pointer type which takes threadcall_handle_t* and void* // (passing in the custom user data allocated by C.malloc) as parameters. type ThreadCallCallback = C.threadcall_callback_t // Create a ThreadCall handle attached to the given EventContext. Each // invokcation of AsyncCall() will schedule a function call executed in the // given EventContext event loop. func NewThreadCall(ec EventContext) ThreadCall { res := &threadCall{ inner: C.threadcall_new(ec.inner) } runtime.SetFinalizer(res, func(self ThreadCall) { self.free() }) return res } func (self ThreadCall) free() { C.threadcall_free(self.inner) } // Schedule a function to be executed in the target event loop. func (self ThreadCall) AsyncCall(callback ThreadCallCallback, userdata rawptr_t) { C.threadcall_async_call(self.inner, callback, userdata) } // The C pointer type for TimerEvent handle. type CTimerEvent = *C.timerev_t type timerEvent struct { inner CTimerEvent ec EventContext } // The handle for a timed event. type TimerEvent = *timerEvent // The C function pointer type which takes timerev_t* (the C pointer to // TimerEvent) and void* (the unsafe pointer to any userdata) as parameter. type TimerEventCallback = C.timerev_callback_t // Create a TimerEvent handle attached to the given EventContext, with a // registered callback. func NewTimerEvent(_ec EventContext, cb TimerEventCallback, userdata rawptr_t) TimerEvent { res := &timerEvent{ inner: C.timerev_new(_ec.inner, cb, userdata), ec: _ec, } _ec.attach(rawptr_t(res.inner), res) runtime.SetFinalizer(res, func(self TimerEvent) { self.free() }) return res } func (self TimerEvent) free() { C.timerev_free(self.inner) } // Change the callback. func (self TimerEvent) SetCallback(callback TimerEventCallback, userdata rawptr_t) { C.timerev_set_callback(self.inner, callback, userdata) } // Schedule the timer to go off after t_sec seconds. func (self TimerEvent) Add(t_sec float64) { C.timerev_add(self.inner, C.double(t_sec)) } // Unschedule the timer if it was scheduled. The timer could still be rescheduled // by calling Add() afterwards. func (self TimerEvent) Del() { self.ec.detach(rawptr_t(self.inner)) C.timerev_del(self.inner) } // Empty the timer. It will be unscheduled and deallocated and its methods // should never be called again. func (self TimerEvent) Clear() { self.ec.detach(rawptr_t(self.inner)) C.timerev_clear(self.inner) } // The C pointer type for a SigEvent. type CSigEvent = *C.sigev_t type sigEvent struct { inner CSigEvent ec EventContext } // The handle for a UNIX signal event. type SigEvent = *sigEvent type SigEventCallback = C.sigev_callback_t var ( SIGTERM = C.SIGTERM SIGINT = C.SIGINT ) // Create a SigEvent handle attached to the given EventContext, with a // registered callback. func NewSigEvent(_ec EventContext, cb SigEventCallback, userdata rawptr_t) SigEvent { res := &sigEvent{ inner: C.sigev_new(_ec.inner, cb, userdata), ec: _ec, } _ec.attach(rawptr_t(res.inner), res) runtime.SetFinalizer(res, func(self SigEvent) { self.free() }) return res } func (self SigEvent) free() { C.sigev_free(self.inner) } // Register the handle to listen for UNIX signal sig. func (self SigEvent) Add(sig int) { C.sigev_add(self.inner, C.int(sig)) } // Unregister the handle. The handle may be re-registered in the future. func (self SigEvent) Del() { self.ec.detach(rawptr_t(self.inner)) C.sigev_del(self.inner) } // Unregister the handle. Any methods of the handle should no longer be used // and the handle will be deallocated. func (self SigEvent) Clear() { self.ec.detach(rawptr_t(self.inner)) C.sigev_clear(self.inner) } // The C pointer type for a MPSCQueue object. type CMPSCQueue = *C.mpscqueue_t type mpscQueue struct { inner CMPSCQueue ec EventContext } // The object for a Multi-Producer, Single-Consumer queue. type MPSCQueue = *mpscQueue // The C function pointer type which takes mpscqueue_t* (the C pointer to // MPSCQueue) and void* (the unsafe pointer to any userdata) as parameter, and // returns either true (partial read from the queue, so it should be scheduled // again), or false (the queue is drained, e.g. TryDequeue returns false). type MPSCQueueCallback = C.mpscqueue_callback_t // Create a MPSCQueue object. func NewMPSCQueue() MPSCQueue { res := &mpscQueue{ inner: C.mpscqueue_new(), ec: nil } runtime.SetFinalizer(res, func(self MPSCQueue) { self.free() }) return res } func (self MPSCQueue) free() { C.mpscqueue_free(self.inner) } // Register the callback invoked when there are new elements in the MPSC queue. func (self MPSCQueue) RegHandler(_ec EventContext, callback MPSCQueueCallback, userdata rawptr_t) { C.mpscqueue_reg_handler(self.inner, _ec.inner, callback, userdata) self.ec = _ec _ec.attach(rawptr_t(self.inner), self) } // Unregister the callback. func (self MPSCQueue) UnregHandler() { self.ec.detach(rawptr_t(self.inner)) C.mpscqueue_unreg_handler(self.inner) } // Enqueue an element (thread-safe). It returns true if successful. If // unbounded is true the queue is expanded when full (and this function will // return true). func (self MPSCQueue) Enqueue(elem rawptr_t, unbounded bool) bool { return bool(C.mpscqueue_enqueue(self.inner, elem, C.bool(unbounded))) } // Try to dequeue an element from the queue (should only be called from one // thread). It returns true if successful. func (self MPSCQueue) TryDequeue(elem *rawptr_t) bool { return bool(C.mpscqueue_try_dequeue(self.inner, elem)) } // Set the initial capacity of the queue. This should only be called before the // first dequeue/enqueue operation. func (self MPSCQueue) SetCapacity(capacity int) { C.mpscqueue_set_capacity(self.inner, C.size_t(capacity)) }