#![allow(dead_code)] use memory::VMem; use mos6502::CPU; use core::intrinsics::transmute; pub trait Screen { fn put(&mut self, x: u8, y: u8, color: u8); fn render(&self); } #[repr(C, packed)] #[derive(Copy, Clone)] struct Sprite { y: u8, /* is the (actualy y) - 1 */ tile: u8, attr: u8, x: u8 } pub struct PPU<'a> { /* internal srams */ nametable_ram: [u8; 2048], palette_ram: [u8; 32], scanline: u16, /* registers */ ppuctl: u8, ppumask: u8, ppustatus: u8, oamaddr: u8, reg: u8, x: u8, /* fine x scroll */ v: u16, /* current vram addr */ t: u16, /* temporary vram addr */ w: bool, /* first/second write toggle */ cycle: u16, /* cycle in the current scanline */ /* rendering regs & latches */ /* background registers */ bg_bitmap: [u16; 2], bg_palette: [u8; 2], /* background latches */ bg_nt: u8, bg_attr: u8, bg_bit_low: u8, bg_bit_high: u8, /* sprites */ oam: [Sprite; 64], oam2: [Sprite; 8], sp_bitmap: [[u8; 2]; 8], sp_cnt: [u8; 8], sp_zero_insight: bool, rendering: bool, buffered_read: u8, /* IO */ mem: &'a mut VMem, scr: &'a mut Screen, } impl<'a> PPU<'a> { pub fn write_ctl(&mut self, data: u8) { self.ppuctl = data; self.t = (self.t & 0x73ff) | ((data as u16 & 3) << 10); } pub fn write_mask(&mut self, data: u8) { self.ppumask = data; } pub fn read_status(&mut self) -> u8 { let res = (self.ppustatus & !0x1fu8) | (self.reg & 0x1f); self.ppustatus &= !PPU::FLAG_VBLANK; self.w = false; res } pub fn write_oamaddr(&mut self, data: u8) { self.oamaddr = data; } pub fn write_oamdata(&mut self, data: u8) { if self.rendering { return } unsafe { let oam_raw = &mut transmute::<[Sprite; 64], [u8; 256]>(self.oam); oam_raw[self.oamaddr as usize] = data; self.oamaddr = self.oamaddr.wrapping_add(1); } } pub fn read_oamdata(&self) -> u8 { unsafe { let oam_raw = &transmute::<[Sprite; 64], [u8; 256]>(self.oam); oam_raw[self.oamaddr as usize] } } pub fn write_scroll(&mut self, data: u8) { let data = data as u16; match self.w { false => { self.t = (self.t & 0x7fe0) | (data >> 3); self.x = (data & 0x07) as u8; self.w = true; }, true => { self.t = (self.t & 0x0c1f) | ((data & 0xf8) << 2) | ((data & 0x07) << 12); self.w = false; } } } pub fn write_addr(&mut self, data: u8) { let data = data as u16; match self.w { false => { self.t = (self.t & 0x00ff) | ((data & 0x3f) << 8); self.w = true; }, true => { self.t = (self.t & 0xff00) | data; self.v = self.t; self.w = false; } } } pub fn read_data(&mut self) -> u8 { let data = self.mem.read(self.v); let res = if self.v < 0x3f00 { let prev = self.buffered_read; self.buffered_read = data; prev } else { self.buffered_read = self.mem.read(self.v - 0x1000); data }; self.v = self.v.wrapping_add(match self.get_vram_inc() { 0 => 1, _ => 32 }); res } pub fn write_data(&mut self, data: u8) { self.mem.write(self.v, data); self.v = self.v.wrapping_add(match self.get_vram_inc() { 0 => 1, _ => 32 }); } pub fn write_oamdma(&mut self, data: u8, cpu: &mut CPU) { let mut addr = (data as u16) << 8; unsafe { let oam_raw = &mut transmute::<[Sprite; 64], [u8; 256]>(self.oam); for _ in 0..0x100 { oam_raw[self.oamaddr as usize] = cpu.mem.read(addr); addr = addr.wrapping_add(1); self.oamaddr = self.oamaddr.wrapping_add(1); } } cpu.cycle += 1; cpu.cycle += cpu.cycle & 1; cpu.cycle += 512; } #[inline(always)] fn get_spritesize(&self) -> u8 {(self.ppuctl >> 5) & 1} #[inline(always)] fn get_flag_nmi(&self) -> bool { (self.ppuctl >> 7) == 1 } #[inline(always)] fn get_vram_inc(&self) -> u8 { (self.ppuctl >> 2) & 1} #[inline(always)] fn get_show_leftmost_bg(&self) -> bool { (self.ppumask >> 1) & 1 == 1} #[inline(always)] fn get_show_leftmost_sp(&self) -> bool { (self.ppumask >> 2) & 1 == 1} #[inline(always)] fn get_show_bg(&self) -> bool { (self.ppumask >> 3) & 1 == 1} #[inline(always)] fn get_show_sp(&self) -> bool { (self.ppumask >> 4) & 1 == 1} const FLAG_OVERFLOW: u8 = 1 << 5; const FLAG_SPRITE_ZERO: u8 = 1 << 6; const FLAG_VBLANK: u8 = 1 << 7; #[inline(always)] fn fetch_nametable_byte(&mut self) { self.bg_nt = self.mem.read(0x2000 | (self.v & 0x0fff)); } #[inline(always)] fn fetch_attrtable_byte(&mut self) { let v = self.v; /* the byte representing 4x4 tiles */ let b = self.mem.read(0x23c0 | (v & 0x0c00) | ((v >> 4) & 0x38) | ((v >> 2) & 0x07)); self.bg_attr = (b >> ((v & 2) | ((v & 0x40) >> 4))) & 3; } #[inline(always)] fn fetch_low_bgtile_byte(&mut self) { /* 0x?000 */ self.bg_bit_low = self.mem.read(((self.ppuctl as u16 & 0x10) << 8) | /* 0x-??0 */ ((self.bg_nt as u16) << 4) | /* 0x---? (0 - 7) */ (self.v >> 12) | 0x0); } #[inline(always)] fn fetch_high_bgtile_byte(&mut self) { /* 0x?000 */ self.bg_bit_high = self.mem.read(((self.ppuctl as u16 & 0x10) << 8) | /* 0x-??0 */ ((self.bg_nt as u16) << 4) | /* 0x---? (8 - f) */ (self.v >> 12) | 0x8); } #[inline(always)] fn load_bgtile(&mut self) { /* load the tile bitmap to high 8 bits of bitmap, * assume the high 8 bits are zeros */ assert!(self.bg_bitmap[0] >> 8 == 0 && self.bg_bitmap[1] >> 8 == 0); self.bg_bitmap[0] |= (self.bg_bit_low as u16) << 8; self.bg_bitmap[1] |= (self.bg_bit_high as u16) << 8; self.bg_palette[0] |= (self.bg_attr & 1) * 0xff; self.bg_palette[1] |= ((self.bg_attr >> 1) & 1) * 0xff; } #[inline(always)] fn shift_sprites(&mut self) { for (i, c) in self.sp_cnt.iter_mut().enumerate() { let c0 = *c; match c0 { 0 => { self.sp_bitmap[i][0] >>= 1; self.sp_bitmap[i][1] >>= 1; }, _ => *c = c0 - 1 } } } #[inline(always)] fn shift_bgtile(&mut self, d: u8) { self.bg_bitmap[0] >>= d; self.bg_bitmap[1] >>= d; self.bg_palette[0] >>= d; self.bg_palette[1] >>= d; } #[inline(always)] fn wrapping_inc_cx(&mut self) { match self.v & 0x001f { 31 => { self.v &= !0x001fu16; /* reset coarse x */ self.v ^= 0x0400; /* switch horizontal nametable */ } _ => self.v += 1 } } #[inline(always)] fn wrapping_inc_y(&mut self) { match (self.v & 0x7000) == 0x7000 { false => self.v += 0x1000, /* fine y < 7 */ true => { self.v &= !0x7000u16; /* fine y <- 0 */ self.v = (self.v & !0x03e0u16) | (match (self.v & 0x03e0) >> 5 { 29 => {self.v ^= 0x0800; 0}, /* at bottom of scanline */ 31 => 0, /* do not switch nt */ y => y + 1 }) << 5; } } } #[inline(always)] fn reset_cx(&mut self) { self.v = (self.v & !0x041fu16) | (self.t & 0x041f); } #[inline(always)] fn reset_y(&mut self) { self.v = (self.v & !0x7be0u16) | (self.t & 0x7be0); } #[inline(always)] fn clear_sprite(&mut self) { self.oam2 = [Sprite{y: 0xff, tile: 0xff, attr: 0xff, x: 0xff}; 8]; } fn eval_sprite(&mut self) { /* we use scanline here because s.y is the (actual y) - 1 */ let mut nidx = 0; let mut n = 0; let h = match self.get_spritesize() { 0 => 8, _ => 16 }; self.sp_zero_insight = false; for (i, s) in self.oam.iter().enumerate() { let y = s.y as u16; if y <= self.scanline && self.scanline < y + h { if nidx == 0 { self.sp_zero_insight = true; } self.oam2[nidx] = *s; nidx += 1; if nidx == 8 { n = i + 1; break; } } } let mut m = 0; unsafe { let oam_raw = &transmute::<[Sprite; 64], [[u8; 4]; 64]>(self.oam); while n < 64 { let y = oam_raw[n][m] as u16; if y <= self.scanline && self.scanline < y + h { self.ppustatus |= PPU::FLAG_OVERFLOW; /* set overflow */ } else { m = (m + 1) & 3; /* emulates hardware bug */ } n += 1; } } } #[inline(always)] fn reverse_byte(mut x: u8) -> u8 { x = ((x & 0xaa) >> 1) | ((x & 0x55) << 1); x = ((x & 0xcc) >> 2) | ((x & 0x33) << 2); x = ((x & 0xf0) >> 4) | ((x & 0x0f) << 4); x } fn fetch_sprite(&mut self) { /* we use scanline here because s.y is the (actual y) - 1 */ for (i, v) in self.oam2.iter().enumerate() { let vflip = (v.attr & 0x80) == 0x80; let y0 = self.scanline - v.y as u16; let (ptable, tidx, y) = match self.get_spritesize() { 0 => { let y = if vflip {7 - y0 as u8} else {y0 as u8}; ((self.ppuctl as u16 & 0x08) << 9, v.tile, y) }, _ => { let y = if vflip {15 - y0 as u8} else {y0 as u8}; ((v.tile as u16 & 1) << 12, (v.tile & !1u8) | (y >> 3), y & 0x7) } }; self.sp_cnt[i] = v.x; let mut low = self.mem.read(ptable | ((tidx as u16) << 4) | 0x0 | y as u16); let mut high = self.mem.read(ptable | ((tidx as u16) << 4) | 0x8 | y as u16); if (v.attr & 0x40) == 0x40 { low = PPU::reverse_byte(low); high = PPU::reverse_byte(high); } self.sp_bitmap[i][0] = low; self.sp_bitmap[i][1] = high; } } #[inline(always)] fn get_bg_pidx(&self) -> u8 { if self.get_show_bg() { ((self.bg_bitmap[1] & 1) << 1) as u8 | (self.bg_bitmap[0] & 1) as u8 } else { 0 } } #[inline(always)] fn get_sp_pidx(&self, i: usize) -> u8 { if self.get_show_sp() { ((self.sp_bitmap[i][1] & 1) << 1) | (self.sp_bitmap[i][0] & 1) } else { 0 } } fn render_pixel(&mut self) { let x = self.cycle - 1; let bg_pidx = if x >= 8 || self.get_show_leftmost_bg() {self.get_bg_pidx()} else {0}; let mut sp_pidx = 0x0; let mut sp_idx = 0; let mut pri = 0x1; if x >= 8 || self.get_show_leftmost_sp() { for i in 0..8 { if self.sp_cnt[i] != 0 { continue; } /* not active */ match self.get_sp_pidx(i) { 0x0 => (), pidx => { if self.sp_zero_insight && bg_pidx != 0 && i == 0 { self.ppustatus |= PPU::FLAG_SPRITE_ZERO; /* set sprite zero hit */ } sp_pidx = pidx; sp_idx = i; pri = (self.oam2[i].attr >> 5) & 1; break; } } } } assert!(0 < self.cycle && self.cycle < 257); assert!(self.scanline < 240); self.scr.put(self.cycle as u8 - 1, self.scanline as u8, if (pri == 0 || bg_pidx == 0) && sp_pidx != 0 { self.mem.read(0x3f10 | ((self.oam2[sp_idx].attr & 3) << 2) as u16 | sp_pidx as u16) } else { self.mem.read(0x3f00 | (((self.bg_palette[1] & 1) << 3) | ((self.bg_palette[0] & 1) << 2)) as u16 | bg_pidx as u16) }); } pub fn new(mem: &'a mut VMem, scr: &'a mut Screen) -> Self { let ppuctl = 0x00; let ppumask = 0x00; let ppustatus = 0xa0; let oamaddr = 0x00; let w = false; let buffered_read = 0x00; let cycle = 370; let scanline = 240; PPU { nametable_ram: [0; 2048], palette_ram: [0; 32], scanline, ppuctl, ppumask, ppustatus, oamaddr, reg: 0, x: 0, v: 0, t: 0, w, cycle, bg_bitmap: [0; 2], bg_palette: [0; 2], bg_nt: 0, bg_attr: 0, bg_bit_low: 0, bg_bit_high: 0, oam: [Sprite{y: 0, tile: 0, attr: 0, x: 0}; 64], oam2: [Sprite{y: 0, tile: 0, attr: 0, x: 0}; 8], sp_bitmap: [[0; 2]; 8], sp_cnt: [0; 8], sp_zero_insight: false, rendering: false, buffered_read, mem, scr } } pub fn reset(&mut self) { self.ppuctl = 0x00; self.ppumask = 0x00; self.ppustatus = self.ppustatus & 0x80; self.w = false; self.buffered_read = 0x00; self.cycle = 370; self.scanline = 240; } pub fn tick(&mut self) -> bool { let cycle = self.cycle; if cycle == 0 { self.cycle = cycle + 1; return false; } let visible = self.scanline < 240; let pre_render = self.scanline == 261; self.rendering = pre_render || visible; if pre_render { if cycle == 1 { /* clear vblank, sprite zero hit & overflow */ self.ppustatus &= !(PPU::FLAG_VBLANK | PPU::FLAG_SPRITE_ZERO | PPU::FLAG_OVERFLOW); } else if 279 < cycle && cycle < 305 { self.reset_y(); } } if self.rendering { let shifting = 0 < cycle && cycle < 257; /* 1..256 */ let fetch = shifting || (320 < cycle && cycle < 337); if fetch { /* 1..256 and 321..336 */ match cycle & 0x7 { 1 => { self.load_bgtile(); self.fetch_nametable_byte(); }, 3 => self.fetch_attrtable_byte(), 5 => self.fetch_low_bgtile_byte(), 7 => self.fetch_high_bgtile_byte(), 0 => self.wrapping_inc_cx(), _ => () } if !pre_render { match cycle { 1 => self.clear_sprite(), /* clear secondary OAM */ 65 => self.eval_sprite(), /* sprite evaluation */ _ => () } } match cycle { 256 => self.wrapping_inc_y(), 328 => self.shift_bgtile(8), _ => () } } else if cycle > 336 { /* 337..340 */ if cycle & 1 == 1 { self.fetch_nametable_byte(); } } else { /* 257..320 */ if cycle == 257 { /* we don't emulate fetch to per cycle precision because all data are fetched * from the secondary OAM which is not subject to any change during this * scanline */ self.reset_cx(); self.fetch_sprite(); } } if shifting { if visible { self.render_pixel(); } self.shift_bgtile(1); self.shift_sprites(); } } else if self.scanline == 241 && cycle == 1 { self.scr.render(); self.ppustatus |= PPU::FLAG_VBLANK; self.cycle += 1; return self.get_flag_nmi(); /* trigger cpu's NMI */ } self.cycle += 1; if self.cycle > 340 { self.cycle = 0; self.scanline += 1; if self.scanline > 261 { self.scanline = 0; } } false } }