summaryrefslogtreecommitdiff
path: root/matrix/generic/cumatrix.c
blob: 3bc58d79a61bda3219d0f817fd37ee797eb29e95 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#ifdef NERV_GENERIC_CUMATRIX
#include "matrix.h"
#include "elem_type.h"

#define MATRIX_DATA_FREE(L, ptr) cuda_matrix_(free)(L, ptr)
#define MATRIX_DATA_ALLOC(L, dptr, stride, width, height) \
                            cuda_matrix_(alloc)(L, dptr, stride, width, height)
#define MATRIX_DATA_WRITE(L, data, idx, val) cuda_matrix_(write)(L, data, idx, val)
#define MATRIX_DATA_READ(L, data, idx) cuda_matrix_(read)(L, data, idx)
#define MATRIX_INIT(L) cuda_matrix_(init)(L)
#define MATRIX_BASE_TNAME nerv_matrix_cuda_tname
#define NERV_GENERIC_MATRIX
#define NERV_GENERIC_CUKERNEL
#include "../../common.h"
#include "../cukernel.h"
#include "cuda.h"
#include "cuda_runtime.h"
#include "driver_types.h"
#include "cublas_v2.h"
#include "../cuda_helper.h"

static cublasHandle_t cublas_handle;

Matrix *nerv_matrix_(new_)(lua_State *L, long nrow, long ncol);
void nerv_matrix_(data_free)(lua_State *L, Matrix *self);

static void nerv_matrix_(add_)(lua_State *L, const Matrix *a, const Matrix *b,
                                const Matrix *c,
                                MATRIX_ELEM alpha, MATRIX_ELEM beta) {
    CUBLAS_SAFE_CALL(
            NERV_CUBLAS_(geam)(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N,
                a->ncol, a->nrow,
                &alpha,
                MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM),
                &beta,
                MATRIX_ELEM_PTR(b), b->stride / sizeof(MATRIX_ELEM),
                MATRIX_ELEM_PTR(c), c->stride / sizeof(MATRIX_ELEM)));
}

static int nerv_matrix_(add)(lua_State *L) {
    Matrix *c = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname));
    MATRIX_ELEM alpha = luaL_checknumber(L, 4); /* alpha */
    MATRIX_ELEM beta = luaL_checknumber(L, 5); /* alpha */
    CHECK_SAME_DIMENSION(a, b);
    CHECK_SAME_DIMENSION(a, c);
    nerv_matrix_(add_)(L, a, b, c, alpha, beta);
    return 0;
}

static int nerv_matrix_(get_cublas_op)(char ch) {
    return (ch == 'T' || ch == 't') ? CUBLAS_OP_T : CUBLAS_OP_N;
}

static int nerv_matrix_(mul)(lua_State *L) {
#define SWAP(a, b) \
    do { int t = (a); (a) = (b); (b) = t; } while (0)

    Matrix *c = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname));
    MATRIX_ELEM alpha = luaL_checknumber(L, 4);
    MATRIX_ELEM beta = luaL_checknumber(L, 5);
    int nargs = lua_gettop(L);
    int ta = nargs > 5 ? nerv_matrix_(get_cublas_op)(*luaL_checkstring(L, 6)) \
                            : CUBLAS_OP_N;
    int tb = nargs > 6 ? nerv_matrix_(get_cublas_op)(*luaL_checkstring(L, 7)) \
                            : CUBLAS_OP_N;
    int am = a->nrow, an = a->ncol;
    int bm = b->nrow, bn = b->ncol;
    if (ta == CUBLAS_OP_T) SWAP(am, an);
    if (tb == CUBLAS_OP_T) SWAP(bm, bn);
    if (an != bm)
        nerv_error(L, "Wrong dimension of multipliers");
/*    MATRIX_ELEM alpha = 1.0f, beta = 0.0f; */
    CUBLAS_SAFE_CALL(
            NERV_CUBLAS_(gemm)(cublas_handle, tb, ta,
                bn, am, bm,
                &alpha,
                MATRIX_ELEM_PTR(b), b->stride / sizeof(MATRIX_ELEM),
                MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM),
                &beta,
                MATRIX_ELEM_PTR(c), c->stride / sizeof(MATRIX_ELEM)));
    return 0;
}

static int nerv_matrix_(create)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *b = nerv_matrix_(new_)(L, a->nrow, a->ncol);
    luaT_pushudata(L, b, nerv_matrix_(tname));
    return 1;
}

static int nerv_matrix_(sigmoid)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname));
    CHECK_SAME_DIMENSION(a, b);
    cudak_(cuda_sigmoid)(b, a);
    return 0;
}

static int nerv_matrix_(sigmoid_grad)(lua_State *L) {
    Matrix *nerr = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *err = luaT_checkudata(L, 2, nerv_matrix_(tname));
    Matrix *output = luaT_checkudata(L, 3, nerv_matrix_(tname));
    CHECK_SAME_DIMENSION(nerr, err);
    CHECK_SAME_DIMENSION(nerr, output);
    cudak_(cuda_sigmoid_grad)(output, err, nerr);
    return 0;
}

static int nerv_matrix_(softmax)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *max = nerv_matrix_(new_)(L, a->nrow, 1);
    Matrix *dno = nerv_matrix_(new_)(L, a->nrow, 1);
    CHECK_SAME_DIMENSION(a, b);
    cudak_(cuda_rowmax)(a, max);
    cudak_(cuda_softmax_denominator)(a, max, dno);
    cudak_(cuda_softmax_final)(a, max, dno, b);
    nerv_matrix_(data_free)(L, max);
    nerv_matrix_(data_free)(L, dno);
    return 0;
}

static int nerv_matrix_(rowsum)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *b = nerv_matrix_(new_)(L, a->nrow, 1);
    cudak_(cuda_rowsum)(a, b);
    luaT_pushudata(L, b, nerv_matrix_(tname));
    return 1;
}

static int nerv_matrix_(colsum)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *b = nerv_matrix_(new_)(L, 1, a->ncol);
    cudak_(cuda_colsum)(a, b);
    luaT_pushudata(L, b, nerv_matrix_(tname));
    return 1;
}

static int nerv_matrix_(rowmax)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *b = nerv_matrix_(new_)(L, a->nrow, 1);
    cudak_(cuda_rowmax)(a, b);
    luaT_pushudata(L, b, nerv_matrix_(tname));
    return 1;
}


static int nerv_matrix_(add_row)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 1, nerv_matrix_(tname));
    double beta = luaL_checknumber(L, 3);
    if (a->ncol != b->ncol)
        nerv_error(L, "the number of columns is not the same");
    if (a->nrow != 1)
        nerv_error(L, "a row vector is expected");
    cudak_(cuda_add_row)(a, b, beta);
    return 0;
}

static int nerv_matrix_(fill)(lua_State *L) {
    Matrix *self = luaT_checkudata(L, 1, nerv_matrix_(tname));
    double val = luaL_checknumber(L, 2);
    cudak_(cuda_fill)(self, val);
    return 0;
}

static int nerv_matrix_(copy_fromd)(lua_State *L) { 
    Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname));
    CHECK_SAME_DIMENSION(a, b);
    CUDA_SAFE_SYNC_CALL(
            cudaMemcpy2D(MATRIX_ELEM_PTR(a), a->stride,
                MATRIX_ELEM_PTR(b), b->stride,
                sizeof(MATRIX_ELEM) * b->ncol, b->nrow,
                cudaMemcpyDeviceToDevice));
    return 0;
}

static int nerv_matrix_(copy_tod)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 2, nerv_matrix_(tname));
    CHECK_SAME_DIMENSION(a, b);
    CUDA_SAFE_SYNC_CALL(
            cudaMemcpy2D(MATRIX_ELEM_PTR(b), b->stride,
                MATRIX_ELEM_PTR(a), a->stride,
                sizeof(MATRIX_ELEM) * a->ncol, a->nrow,
                cudaMemcpyDeviceToDevice));
    return 0;
}

extern const char *MATRIX_CUMATRIX_HOST_TNAME;
static int nerv_matrix_(copy_fromh)(lua_State *L) { 
    Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME);
    CHECK_SAME_DIMENSION(a, b);
    CUDA_SAFE_SYNC_CALL(
            cudaMemcpy2D(MATRIX_ELEM_PTR(a), a->stride,
                MATRIX_ELEM_PTR(b), b->stride,
                sizeof(MATRIX_ELEM) * b->ncol, b->nrow,
                cudaMemcpyHostToDevice));
    return 0;
}

static int nerv_matrix_(copy_toh)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME);
    CHECK_SAME_DIMENSION(a, b);
    CUDA_SAFE_SYNC_CALL(
            cudaMemcpy2D(MATRIX_ELEM_PTR(b), b->stride,
                MATRIX_ELEM_PTR(a), a->stride,
                sizeof(MATRIX_ELEM) * a->ncol, a->nrow,
                cudaMemcpyDeviceToHost));
    return 0;
}

static int nerv_matrix_(trans)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *b = nerv_matrix_(new_)(L, a->ncol, a->nrow);
    MATRIX_ELEM alpha = 1, beta = 0;
    CUBLAS_SAFE_CALL(
            NERV_CUBLAS_(geam)(cublas_handle, CUBLAS_OP_T, CUBLAS_OP_T,
                a->nrow, a->ncol,
                &alpha,
                MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM),
                &beta,
                MATRIX_ELEM_PTR(a), a->stride / sizeof(MATRIX_ELEM),
                MATRIX_ELEM_PTR(b), b->stride / sizeof(MATRIX_ELEM)));
    luaT_pushudata(L, b, nerv_matrix_(tname));
    return 1;
}

static int nerv_matrix_(mul_elem)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 3, nerv_matrix_(tname));
    Matrix *c = luaT_checkudata(L, 1, nerv_matrix_(tname));
    CHECK_SAME_DIMENSION(a, b);
    CHECK_SAME_DIMENSION(a, c);
    cudak_(cuda_mul_elem)(a, b, c);
    return 0;
}

static int nerv_matrix_(log_elem)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 2, nerv_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 1, nerv_matrix_(tname));
    CHECK_SAME_DIMENSION(a, b);
    cudak_(cuda_log_elem)(a, b);
    return 0;
}

extern const char *nerv_matrix_host_int_tname;
static int nerv_matrix_(copy_rows_fromh_by_idx)(lua_State *L) {
    Matrix *a = luaT_checkudata(L, 1, nerv_matrix_(tname));
    Matrix *b = luaT_checkudata(L, 2, MATRIX_CUMATRIX_HOST_TNAME);
    Matrix *idx = luaT_checkudata(L, 3, nerv_matrix_host_int_tname);
    long *idx_ptr = idx->data.i;
    int i;
    long nrow = a->nrow;
    if (idx->nrow != 1)
        nerv_error(L, "index should be a vector");
    if (idx->ncol != nrow)
        nerv_error(L, "index dimension mismatch");
    if (a->ncol != b->ncol)
        nerv_error(L, "source/destination dimension mismatch");
    cudaStream_t *streams = (cudaStream_t*)malloc(sizeof(cudaStream_t) * nrow);
    for (i = 0; i < nrow; i++)
    {
        CUDA_SAFE_CALL(cudaStreamCreate(streams + i));
        CUDA_SAFE_CALL(cudaMemcpyAsync(MATRIX_ROW_PTR(a, i),
                    MATRIX_ROW_PTR(b, idx_ptr[i]),
                    b->stride,
                    cudaMemcpyHostToDevice, streams[i]));
    }
    for (i = 0; i < nrow; i++)
    {
        CUDA_SAFE_CALL(cudaStreamSynchronize(streams[i]));
        CUDA_SAFE_CALL(cudaStreamDestroy(streams[i]));
    }
    return 0;
}

static const luaL_Reg nerv_matrix_(extra_methods)[] = {
    {"create", nerv_matrix_(create)},
    {"colsum", nerv_matrix_(colsum)},
    {"rowsum", nerv_matrix_(rowsum)},
    {"rowmax", nerv_matrix_(rowmax)},
    {"trans", nerv_matrix_(trans)},
    /* in-place calc */
    {"copy_fromh", nerv_matrix_(copy_fromh)},
    {"copy_fromd", nerv_matrix_(copy_fromd)},
    {"copy_toh", nerv_matrix_(copy_toh)},
    {"copy_tod", nerv_matrix_(copy_tod)},
    {"add", nerv_matrix_(add)},
    {"mul", nerv_matrix_(mul)},
    {"add_row", nerv_matrix_(add_row)},
    {"fill", nerv_matrix_(fill)},
    {"sigmoid", nerv_matrix_(sigmoid)},
    {"sigmoid_grad", nerv_matrix_(sigmoid_grad)},
    {"softmax", nerv_matrix_(softmax)},
    {"mul_elem", nerv_matrix_(mul_elem)},
    {"log_elem", nerv_matrix_(log_elem)},
    {"copy_rows_fromh_by_idx", nerv_matrix_(copy_rows_fromh_by_idx)},
    {NULL, NULL}
};

static void cuda_matrix_(init)(lua_State *L) {
    luaN_append_methods(L, nerv_matrix_(extra_methods));
    cublasCreate(&cublas_handle);
}

static void cuda_matrix_(free)(lua_State *L, MATRIX_ELEM *ptr) {
    CUDA_SAFE_SYNC_CALL(cudaFree(ptr));
}

static void cuda_matrix_(alloc)(lua_State *L, MATRIX_ELEM **dptr,
                                size_t *stride, long width, long height) {
    CUDA_SAFE_SYNC_CALL(cudaMallocPitch((void **)dptr, stride, width, height));
}

static MATRIX_ELEM cuda_matrix_(read)(lua_State *L, MATRIX_ELEM *data,
                                        int idx) {
    MATRIX_ELEM res;
    CUDA_SAFE_SYNC_CALL(cudaMemcpy(&res, data + idx,
                sizeof(MATRIX_ELEM), cudaMemcpyDeviceToHost));
    return res;
}

static void cuda_matrix_(write)(lua_State *L, MATRIX_ELEM *data,
                                int idx, MATRIX_ELEM val) {
    CUDA_SAFE_SYNC_CALL(cudaMemcpy(data + idx, &val,
                sizeof(MATRIX_ELEM), cudaMemcpyHostToDevice));
}

int nerv_matrix_(get_elem)(lua_State *L) {
    return nerv_error_method_not_implemented(L);
}

int nerv_matrix_(set_elem)(lua_State *L) {
    return nerv_error_method_not_implemented(L);
}

#include "matrix.c"
#endif