summaryrefslogtreecommitdiff
path: root/doc/nerv_matrix.md
blob: 1a2778baa6c29e854b646b39910a76added93b8c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#The Nerv Matrix Package#
Part of the [Nerv](../README.md) toolkit.

##Description##
###Underlying structure###
In the begining is could be useful to know something about the underlying structure of a __Nerv__ matrix. Please keep in mind that matrice in __Nerv__ is row-major.  
Every matrix object is a encapsulation of a C struct that describes the attributes of this matrix.  
```
typedef struct Matrix {
    size_t stride;              /* size of a row */
    long ncol, nrow, nmax;    /* dimension of the matrix, nmax is simply nrow * ncol */
    union {
        float *f;
        double *d;
        long *i;
    } data;                   /* pointer to actual storage */
    long *data_ref;
} Matrix;
```
It is worth mentioning that that `data_ref` is a counter which counts the number of references to its memory space, mind that it will also be increased when a row of the matrix is referenced(`col = m[2]`). A __Nerv__ matrix will deallocate its space when this counter is decreased to zero.
Also note that all assigning operation in __Nerv__ is reference copy, you can use `copy_tod` or `copy_toh` method to copy value. Also, row assigning operations like `m1[2]=m2[3]` is forbidden in __Nerv__.

###Class hierarchy###
The class hierarchy of the matrix classes can be clearly observed in `matrix/init.c`.
First there is a abstract base class __Nerv.Matrix__, which is inherited by __Nerv.CuMatrix__ and __Nerv.MMatrix__(also abstract).  
Finally, there is __Nerv.CuMatrixFloat__, __Nerv.CuMatrixDouble__, inheriting __Nerv.CuMatrix__, and __Nerv.MMatrixFloat__, __Nerv.MMatrixDouble__, __Nerv.MMatrixInt__ , inheriting __Nerv.MMatrix__.

##Methods##
Mind that usually a matrix object can only do calculation with matrix of its own type(a __Nerv.CuMatrixFloat__ matrix can only do add operation with a __Nerv.CuMatrixFloat__).  
In the methods description below, __Matrix__ could be __Nerv.CuMatrixFloat__, __Nerv.CuMatrixDouble__, __Nerv.MMatrixFloat__ or __Nerv.MMatrixDouble__. __Element_type__ could be `float` or `double`, respectively.
* __Matrix = Matrix(int nrow, int ncol)__  
Returns a __Matrix__ object of `nrow` rows and `ncol` columns.
* __Element_type = Matrix.get_elem(Matrix self, int index)__  
Returns the element value at the specific index(treating the matrix as a vector). The index should be less than `nmax` of the matrix.
* __void Matrix.set_elem(Matrix self, int index, Element_type value)__  
Set the value at `index` to be `value`.
* __int Matrix.ncol(Matrix self)__  
Get `ncol`, the number of columns.
* __int Matrix.nrow(Matrix self)__  
Get `nrow`, the number of rows.
* __int Matrix.get_dataref_value(Matrix self)__  
Returns the value(not a pointer) of space the `data_ref` pointer pointed to. This function is mainly for debugging.  
* __Matrix/Element\_type, boolean Matrix.\_\_index\_\_(Matrix self, int index)__  
If the matrix has more than one row, will return the row at `index` as a __Matrix__ . Otherwise it will return the value at `index`.
* __void Matrix.\_\_newindex\_\_(Matrix self, int index, Element_type value)__  
Set the element at `index` to be `value`.
---
* __Matrix Matrix.create(Matrix a)__  
Return a new __Matrix__ of `a`'s size(of the same number of rows and columns).
* __Matrix Matrix.colsum(Matrix self)__  
Return a new __Matrix__ of size (1,`self.ncol`), which stores the sum of all columns of __Matrix__ `self`.
* __Matrix Matrix.rowsum(Matrix self)__  
Return a new __Matrix__ of size (`self.nrow`,1), which stores the sum of all rows of __Matrix__ `self`.
* __Matrix Matrix.rowmax(Matrix self)__  
Return a new __Matrix__ of size (`self.nrow`,1), which stores the max value of all rows of __Matrix__ `self`.
* __Matrix Matrix.trans(Matrix self)__  
Return a new __Matrix__ of size (`self.ncol`,`self.nrow`), which stores the transpose of __Matrix__ `self`.
* __void Matrix.copy_fromh(Matrix self, MMatrix a)__  
Copy the content of a __MMatrix__ `a` to __Matrix__ `self`, they should be of the same size.
* __void Matrix.copy_fromd(Matrix self, CuMatrix a)__  
Copy the content of a __CuMatrix__ `a` to __Matrix__ `self`, they should be of the same size.
* __void Matrix.copy_toh(Matrix self, MMatrix a)__  
Copy the content of the __Matrix__ `self` to a __MMatrix__ `a`.
* __void Matrix.copy_tod(Matrix self, CuMatrix a)__  
Copy the content of the __Matrix__ `self` to a __CuMatrix__ `a`.
* __void Matrix.add(Matrix self, Matrix ma, Matrix mb, Element_type alpha, Element_type beta)__  
It sets the content of __Matrix__ `self` to be `alpha * ma + beta * mb`.__Matrix__ `ma,mb,self` should be of the same size.
* __void Matrix.mul(Matrix self, Matrix ma, Matrix mb, Element_type alpha, Element_type beta, [string ta, string tb])__  
It sets the content of __Matrix__ `self` to be `beta * self + alpha * ma * mb`. `ta` and `tb` is optional, if `ta` is 'T', then `ma` will be transposed, also if `tb` is 'T', `mb` will be transposed.
* __void Matrix.add_row(Matrix self, Matrix va, Element_type beta)__  
Add `beta * va` to every row of __Matrix__ `self`.
* __void Matrix.fill(Matrix self, Element_type value)__  
Fill the content of __Matrix__ `self` to be `value`.
* __void Matrix.sigmoid(Matrix self, Matrix ma)__  
Set the element of __Matrix__ `self` to be elementwise-sigmoid of `ma`.
* __void Matrix.sigmoid_grad(Matrix self, Matrix err, Matrix output)__  
Set the element of __Matrix__ `self`, to be `self[i][j]=err[i][j]*output[i][j]*(1-output[i][j])`. This function is used to propagate sigmoid layer error.
* __void Matrix.softmax(Matrix self, Matrix a)__  
Calculate a row-by-row softmax of __Matrix__ `a` and save the result in `self`.
* __void Matrix.mul_elem(Matrix self, Matrix ma, Matrix mb)__  
Calculate element-wise multiplication of __Matrix__ `ma` and `mb`, store the result in `self`.
* __void Matrix.log_elem(Matrix self, Matrix ma)__  
Calculate element-wise log of __Matrix__ `ma`, store the result in `self`.
* __void Matrix.copy_rows_fromh_by_idx(Matrix self, MMatrix ma, MMatrixInt idx)__  
`idx` should be a row vector. This function copy the rows of `ma` to `self` according to `idx`, in other words, it assigns `ma[idx[i]]` to `self[i]`.
* __void Matrix.expand_frm(Matrix self, Matrix a, int context)__  
Treating each row of `a` as speech feature, and do a feature expansion. The `self` should of size `(a.nrow, a.ncol * (context * 2 + 1))`. `self[i]` will be `(a[i-context] a[i-context+1] ... a[i] a[i+1] a[i+context])`. `a[0]` and `a[nrow]` will be copied to extend the index range.
* __void Matrix.rearrange_frm(Matrix self, Matrix a, int step)__  
Rearrange `a` according to its feature dimension. The `step` is the length of context. So, `self[i][j]` will be assigned `a[i][j / step + (j % step) * (a.ncol / step)]`. `a` and `self` should be of the same size and `step` should be divisible by `a.ncol`.
* __void Matrix.scale_row(Matrix self, Matrix scale)__  
Scale each column of `self` according to a vector `scale`. `scale` should be of size `1 * self.ncol`.
* __Matrix Matrix.\_\_add\_\_(Matrix ma, Matrix mb)__  
Returns a new __Matrix__ which stores the result of `ma+mb`.
* __Matrix Matrix.\_\_sub\_\_(Matrix ma, Matrix mb)__  
Returns a new __Matrix__ which stores the result of `ma-mb`.
* __Matrix Matrix.\_\_mul\_\_(Matrix ma, Matrix mb)__  
Returns a new __Matrix__ which stores the result of `ma*mb`.
* __CuMatrix CuMatrix.new_from_host(MMatrix m)__  
Return a new __CuMatrix__ which is a copy of `m`.
* __MMatrix CuMatrix.new_to_host(CuMatrix self)__  
Return a new __MMatrix__ which is a copy of `self`.
* __string Matrix.\_\_tostring\_\_(Matrix self)__  
Returns a string containing values of __Matrix__ `self`.
---

##Examples##
* Use `get_dataref_value` to test __Nerv__'s matrix space allocation.  
```
m = 10
n = 10
fm = nerv.MMatrixFloat(m, n)
dm = nerv.MMatrixDouble(m, n)
for i = 0, m - 1 do
    for j = 0, n - 1 do
        t = i / (j + 1)
        fm[i][j] = t
        dm[i][j] = t
    end
end
print("test fm:get_dataref_value:", fm:get_dataref_value())
print("forced a garbade collect")
collectgarbage("collect")
print("test fm:get_dataref_value:", fm:get_dataref_value())
print(fm)
print(dm)
```
* Test some __Matrix__ calculations.
```
m = 4
n = 4
fm = nerv.CuMatrixFloat(m, n)
dm = nerv.CuMatrixDouble(m, n)
for i = 0, m - 1 do
    for j = 0, n - 1 do
        -- local t = math.random(10)
        t = i / (j + 1)
        fm[i][j] = t
        dm[i][j] = t
    end
end
print(fm)
fs = fm:create()
fs:softmax(fm)
-- print(fs)
print(dm)
ds = dm:create()
ds:softmax(dm)
-- print(ds)
print(fs)
print(fs + fs)
print(ds + ds)
print(fs - fs)
print(ds - ds)
a = fs:create()
a:mul_elem(fs, fs)
print(a)
a:log_elem(fs)
print(a)
```