#ifdef NERV_GENERIC_CUKERNEL #include #include #include "../matrix.h" #include "cuda.h" #include "float.h" #define CUDA_THREADS_N 16 #define CUDA_THREADS_NN ((CUDA_THREADS_N) * (CUDA_THREADS_N)) #define CEIL_DIV(a, b) (((a) + (b) - 1) / (b)) __global__ void cudak_(log_elem)(const MATRIX_ELEM *a, MATRIX_ELEM *b, int nrow, int ncol, int stride) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; long idx; MATRIX_ELEM tmp; if (i >= nrow || j >= ncol) return; idx = j + i * stride; tmp = a[idx]; if(tmp < FLT_MIN) tmp = FLT_MIN; b[idx] = log(tmp); } __global__ void cudak_(mul_elem)(const MATRIX_ELEM *a, const MATRIX_ELEM *b, MATRIX_ELEM *c, int nrow, int ncol, int stride) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; long idx; if (i >= nrow || j >= ncol) return; idx = j + i * stride; c[idx] = a[idx] * b[idx]; } __global__ void cudak_(sigmoid)(const MATRIX_ELEM *a, MATRIX_ELEM *b, int nrow, int ncol, int stride) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; long idx; if (i >= nrow || j >= ncol) return; idx = j + i * stride; b[idx] = 1.0 / (1.0 + exp(-a[idx])); } __global__ void cudak_(sigmoid_grad)(const MATRIX_ELEM *output, const MATRIX_ELEM *err, MATRIX_ELEM *nerr, int nrow, int ncol, int stride) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; long idx; if (i >= nrow || j >= ncol) return; idx = j + i * stride; nerr[idx] = output[idx] * (1.0 - output[idx]) * err[idx]; } __global__ void cudak_(softmax_final)(const MATRIX_ELEM *a, MATRIX_ELEM *b, const MATRIX_ELEM *max, const MATRIX_ELEM *deno, int nrow, int ncol, int stride, int mstride) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; long idx; if (i >= nrow || j >= ncol) return; idx = j + i * stride; b[idx] = exp(a[idx] - max[0 + i * mstride]) / deno[0 + i * mstride]; } __global__ void cudak_(block_reduce_rowsum)(const MATRIX_ELEM *input, MATRIX_ELEM *output, const int istride, const int ostride, const int n) { extern __shared__ MATRIX_ELEM cudak_(arr)[]; int j = blockIdx.x * blockDim.x + threadIdx.x; cudak_(arr)[threadIdx.x] = j < n ? input[j + istride * blockIdx.y] : 0; __syncthreads(); for (int offset = blockDim.x >> 1; offset; offset >>= 1) { if (threadIdx.x < offset) cudak_(arr)[threadIdx.x] += cudak_(arr)[threadIdx.x + offset]; __syncthreads(); } if (threadIdx.x == 0) output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; } __global__ void cudak_(block_reduce_colsum)(const MATRIX_ELEM *input, MATRIX_ELEM *output, const int istride, const int ostride, const int n) { extern __shared__ MATRIX_ELEM cudak_(arr)[]; int i = blockIdx.y * blockDim.y + threadIdx.y; cudak_(arr)[threadIdx.y] = i < n ? input[blockIdx.x + istride * i] : 0; __syncthreads(); for (int offset = blockDim.y >> 1; offset; offset >>= 1) { if (threadIdx.y < offset) cudak_(arr)[threadIdx.y] += cudak_(arr)[threadIdx.y + offset]; __syncthreads(); } if (threadIdx.y == 0) output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; } __global__ void cudak_(block_reduce_colsame)(const MATRIX_ELEM *input, const MATRIX_ELEM *ref_input, MATRIX_ELEM *output, const int istride, const int ostride, const int n) { extern __shared__ MATRIX_ELEM cudak_(arr)[]; int i = blockIdx.y * blockDim.y + threadIdx.y; cudak_(arr)[threadIdx.y] = (i < n && input[blockIdx.x + istride * i] == \ ref_input[blockIdx.x + istride * i]) ? 1.0 : 0; __syncthreads(); for (int offset = blockDim.y >> 1; offset; offset >>= 1) { if (threadIdx.y < offset) cudak_(arr)[threadIdx.y] += cudak_(arr)[threadIdx.y + offset]; __syncthreads(); } if (threadIdx.y == 0) output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; } __global__ void cudak_(block_reduce_softmax_rowsum)(const MATRIX_ELEM *input, MATRIX_ELEM *output, const MATRIX_ELEM *max, const int istride, const int ostride, const int mstride, const int n) { extern __shared__ MATRIX_ELEM cudak_(arr)[]; int j = blockIdx.x * blockDim.x + threadIdx.x; cudak_(arr)[threadIdx.x] = j < n ? exp(input[j + istride * blockIdx.y] - \ max[0 + mstride * blockIdx.y]) : 0; __syncthreads(); for (int offset = blockDim.x >> 1; offset; offset >>= 1) { if (threadIdx.x < offset) cudak_(arr)[threadIdx.x] += cudak_(arr)[threadIdx.x + offset]; __syncthreads(); } if (threadIdx.x == 0) output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; } __global__ void cudak_(block_reduce_rowmax)(const MATRIX_ELEM *input, MATRIX_ELEM *output, const int istride, const int ostride, const int n) { extern __shared__ MATRIX_ELEM cudak_(arr)[]; int j = blockIdx.x * blockDim.x + threadIdx.x; cudak_(arr)[threadIdx.x] = j < n ? input[j + istride * blockIdx.y] : -FLT_MAX; __syncthreads(); for (int offset = blockDim.x >> 1; offset; offset >>= 1) { if (threadIdx.x < offset) { MATRIX_ELEM l = cudak_(arr)[threadIdx.x], r = cudak_(arr)[threadIdx.x + offset]; if (r > l) cudak_(arr)[threadIdx.x] = r; } __syncthreads(); } if (threadIdx.x == 0) output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; } __global__ void cudak_(block_reduce_rowmax_idx)(const MATRIX_ELEM *input, const MATRIX_ELEM *idx_input, MATRIX_ELEM *output, MATRIX_ELEM *idx_output, const int istride, const int ostride, const int n) { extern __shared__ MATRIX_ELEM cudak_(arr)[]; MATRIX_ELEM *arr_val = cudak_(arr); MATRIX_ELEM *arr_idx = arr_val + blockDim.x; int j = blockIdx.x * blockDim.x + threadIdx.x; arr_val[threadIdx.x] = j < n ? input[j + istride * blockIdx.y] : -FLT_MAX; arr_idx[threadIdx.x] = j < n ? idx_input[j + istride * blockIdx.y] : 0; __syncthreads(); for (int offset = blockDim.x >> 1; offset; offset >>= 1) { if (threadIdx.x < offset) { MATRIX_ELEM l = arr_val[threadIdx.x], r = arr_val[threadIdx.x + offset]; if (r > l) { arr_val[threadIdx.x] = r; arr_idx[threadIdx.x] = arr_idx[threadIdx.x + offset]; } } __syncthreads(); } if (threadIdx.x == 0) { output[blockIdx.x + ostride * blockIdx.y] = arr_val[0]; idx_output[blockIdx.x + ostride * blockIdx.y] = arr_idx[0]; } } __global__ void cudak_(add_row)(const MATRIX_ELEM *a, MATRIX_ELEM *b, int nrow, int ncol, int stride, double beta) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; if (i >= nrow || j >= ncol) return; b[j + i * stride] += beta * a[j]; } __global__ void cudak_(fill)(MATRIX_ELEM *a, int nrow, int ncol, int stride, double val) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; if (i >= nrow || j >= ncol) return; a[j + i * stride] = val; } __global__ void cudak_(expand_frm)(const MATRIX_ELEM *a, MATRIX_ELEM *b, int nrow, int ncol, int enrow, int encol, int stride, int estride, int context) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; int ridx; if (i >= enrow || j >= encol) return; ridx = i + j / ncol - context; if (ridx < 0) ridx = 0; else if (ridx >= nrow) ridx = nrow - 1; b[j + i * estride] = a[j % ncol + ridx * stride]; } __global__ void cudak_(rearrange_frm)(const MATRIX_ELEM *a, MATRIX_ELEM *b, int nrow, int ncol, int stride, int step, int orig_dim) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; if (i >= nrow || j >= ncol) return; b[j + i * stride] = a[j / step + (j % step) * orig_dim + i * stride]; } __global__ void cudak_(scale_rows_by_col)(const MATRIX_ELEM *a, MATRIX_ELEM *b, int nrow, int ncol, int astride, int bstride) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; if (i >= nrow || j >= ncol) return; b[j + i * bstride] *= a[i * astride]; } __global__ void cudak_(scale_rows_by_row)(const MATRIX_ELEM *a, MATRIX_ELEM *b, int nrow, int ncol, int stride) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; if (i >= nrow || j >= ncol) return; b[j + i * stride] *= a[j]; } __global__ void cudak_(decompress)(const MATRIX_ELEM *a, MATRIX_ELEM *b, int nrow, int ncol, int stride_a, int stride_b) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; if (i >= nrow || j >= ncol) return; b[lrintf(a[j + i * stride_a]) + i * stride_b] = 1.0; } __global__ void cudak_(gen_col_idx)(MATRIX_ELEM *b, int nrow, int ncol, int stride) { int j = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.y * blockDim.y + threadIdx.y; if (i >= nrow || j >= ncol) return; b[j + i * stride] = j; } extern "C" { #include "../cukernel.h" void cudak_(cuda_log_elem)(const Matrix *a, Matrix *b) { dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), CEIL_DIV(b->nrow, threadsPerBlock.y)); cudak_(log_elem)<<>> \ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM)); cudaStreamSynchronize(0); } void cudak_(cuda_mul_elem)(const Matrix *a, const Matrix *b, Matrix *c) { dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), CEIL_DIV(b->nrow, threadsPerBlock.y)); cudak_(mul_elem)<<>> \ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), MATRIX_ELEM_PTR(c), b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM)); cudaStreamSynchronize(0); } void cudak_(cuda_sigmoid)(const Matrix *a, Matrix *b) { dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), CEIL_DIV(b->nrow, threadsPerBlock.y)); cudak_(sigmoid)<<>> \ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM)); cudaStreamSynchronize(0); } void cudak_(cuda_sigmoid_grad)(const Matrix *output, const Matrix *err, Matrix *nerr) { dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); dim3 numBlocks(CEIL_DIV(nerr->ncol, threadsPerBlock.x), CEIL_DIV(nerr->nrow, threadsPerBlock.y)); cudak_(sigmoid_grad)<<>> \ (MATRIX_ELEM_PTR(output), MATRIX_ELEM_PTR(err), MATRIX_ELEM_PTR(nerr), nerr->nrow, nerr->ncol, nerr->stride / sizeof(MATRIX_ELEM)); cudaStreamSynchronize(0); } void cudak_(cuda_rowsum)(const Matrix *a, Matrix *b) { dim3 block(CUDA_THREADS_NN, 1); int ncol = a->ncol; int blocks_per_row = CEIL_DIV(ncol, block.x); dim3 grid(blocks_per_row, a->nrow); MATRIX_ELEM *res; size_t stride; cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); cudak_(block_reduce_rowsum)<<>> \ (MATRIX_ELEM_PTR(a), res, a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), ncol); ncol = blocks_per_row; assert((unsigned long)ncol <= block.x); grid.x = 1; cudaStreamSynchronize(0); cudak_(block_reduce_rowsum)<<>> \ (res, MATRIX_ELEM_PTR(b), stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), ncol); cudaStreamSynchronize(0); cudaFree(res); } void cudak_(cuda_colsame)(const Matrix *a, const Matrix *ref, Matrix *b) { dim3 block(1, CUDA_THREADS_NN); int nrow = a->nrow; int blocks_per_col = CEIL_DIV(nrow, block.y); dim3 grid(a->ncol, blocks_per_col); MATRIX_ELEM *res; size_t stride; cudaMallocPitch(&res, &stride, a->ncol * sizeof(MATRIX_ELEM), blocks_per_col); cudak_(block_reduce_colsame)<<>> \ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(ref), res, a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), nrow); nrow = blocks_per_col; assert((unsigned long)nrow <= block.y); grid.y = 1; cudaStreamSynchronize(0); cudak_(block_reduce_colsum)<<>> \ (res, MATRIX_ELEM_PTR(b), stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), nrow); cudaStreamSynchronize(0); cudaFree(res); } void cudak_(cuda_colsum)(const Matrix *a, Matrix *b) { dim3 block(1, CUDA_THREADS_NN); int nrow = a->nrow; int blocks_per_col = CEIL_DIV(nrow, block.y); dim3 grid(a->ncol, blocks_per_col); MATRIX_ELEM *res; size_t stride; cudaMallocPitch(&res, &stride, a->ncol * sizeof(MATRIX_ELEM), blocks_per_col); cudak_(block_reduce_colsum)<<>> \ (MATRIX_ELEM_PTR(a), res, a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), nrow); nrow = blocks_per_col; assert((unsigned long)nrow <= block.y); grid.y = 1; cudaStreamSynchronize(0); cudak_(block_reduce_colsum)<<>> \ (res, MATRIX_ELEM_PTR(b), stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), nrow); cudaStreamSynchronize(0); cudaFree(res); } void cudak_(cuda_softmax_final)(const Matrix *a, const Matrix *max, const Matrix *deno, Matrix *b) { dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), CEIL_DIV(b->nrow, threadsPerBlock.y)); cudak_(softmax_final)<<>> \ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), MATRIX_ELEM_PTR(max), MATRIX_ELEM_PTR(deno), b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM), max->stride / sizeof(MATRIX_ELEM)); cudaStreamSynchronize(0); } void cudak_(cuda_softmax_denominator)(const Matrix *a, const Matrix *max, Matrix *b) { dim3 block(CUDA_THREADS_NN, 1); int ncol = a->ncol; int blocks_per_row = CEIL_DIV(ncol, block.x); dim3 grid(blocks_per_row, a->nrow); MATRIX_ELEM *res; size_t stride; assert(max->ncol == 1); cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); cudak_(block_reduce_softmax_rowsum) \ <<>> \ (MATRIX_ELEM_PTR(a), res, MATRIX_ELEM_PTR(max), a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), max->stride / sizeof(MATRIX_ELEM), ncol); ncol = blocks_per_row; assert((unsigned long)ncol <= block.x); grid.x = 1; cudaStreamSynchronize(0); cudak_(block_reduce_rowsum) \ <<>> \ (res, MATRIX_ELEM_PTR(b), stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), ncol); cudaStreamSynchronize(0); cudaFree(res); } void cudak_(cuda_rowmax)(const Matrix *a, Matrix *b) { dim3 block(CUDA_THREADS_NN, 1); int ncol = a->ncol; int blocks_per_row = CEIL_DIV(ncol, block.x); dim3 grid(blocks_per_row, a->nrow); MATRIX_ELEM *res; size_t stride; cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); cudak_(block_reduce_rowmax)<<>> \ (MATRIX_ELEM_PTR(a), res, a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), ncol); ncol = blocks_per_row; assert((unsigned long)ncol <= block.x); grid.x = 1; cudaStreamSynchronize(0); cudak_(block_reduce_rowmax)<<>> \ (res, MATRIX_ELEM_PTR(b), stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), ncol); cudaStreamSynchronize(0); cudaFree(res); } void cudak_(cuda_rowmax_idx)(const Matrix *a, Matrix *b, Matrix *b_idx) { dim3 block(CUDA_THREADS_NN, 1); int ncol = a->ncol; int blocks_per_row = CEIL_DIV(ncol, block.x); dim3 grid(blocks_per_row, a->nrow); MATRIX_ELEM *a_idx, *res, *res_idx; size_t stride; cudaMallocPitch(&a_idx, &stride, a->stride, a->nrow); cudak_(gen_col_idx)<<>>(a_idx, a->nrow, ncol, stride / sizeof(MATRIX_ELEM)); cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); cudaMallocPitch(&res_idx, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); cudaStreamSynchronize(0); cudak_(block_reduce_rowmax_idx)<<>> \ (MATRIX_ELEM_PTR(a), a_idx, res, res_idx, a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), ncol); ncol = blocks_per_row; assert((unsigned long)ncol <= block.x); grid.x = 1; cudaStreamSynchronize(0); cudak_(block_reduce_rowmax_idx)<<>> \ (res, res_idx, MATRIX_ELEM_PTR(b), MATRIX_ELEM_PTR(b_idx), stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), ncol); cudaStreamSynchronize(0); cudaFree(a_idx); cudaFree(res); cudaFree(res_idx); } /* in-place calc */ void cudak_(cuda_add_row)(const Matrix *a, Matrix *b, double beta) { dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), CEIL_DIV(b->nrow, threadsPerBlock.y)); cudak_(add_row)<<>> \ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM), beta); cudaStreamSynchronize(0); } void cudak_(cuda_fill)(Matrix *a, double val) { dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); dim3 numBlocks(CEIL_DIV(a->ncol, threadsPerBlock.x), CEIL_DIV(a->nrow, threadsPerBlock.y)); cudak_(fill)<<>> \ (MATRIX_ELEM_PTR(a), a->nrow, a->ncol, a->stride / sizeof(MATRIX_ELEM), val); cudaStreamSynchronize(0); } void cudak_(cuda_expand_frm)(const Matrix *a, Matrix *b, int context) { dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), CEIL_DIV(b->nrow, threadsPerBlock.y)); cudak_(expand_frm)<<>> \ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), a->nrow, a->ncol, b->nrow, b->ncol, a->stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), context); cudaStreamSynchronize(0); } void cudak_(cuda_rearrange_frm)(const Matrix *a, Matrix *b, int step) { dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), CEIL_DIV(b->nrow, threadsPerBlock.y)); cudak_(rearrange_frm)<<>> \ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM), step, b->ncol / step); cudaStreamSynchronize(0); } void cudak_(cuda_scale_rows_by_col)(const Matrix *a, Matrix *b) { dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), CEIL_DIV(b->nrow, threadsPerBlock.y)); cudak_(scale_rows_by_col)<<>> \ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), b->nrow, b->ncol, a->stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM)); cudaStreamSynchronize(0); } void cudak_(cuda_scale_rows_by_row)(const Matrix *a, Matrix *b) { dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), CEIL_DIV(b->nrow, threadsPerBlock.y)); cudak_(scale_rows_by_row)<<>> \ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM)); cudaStreamSynchronize(0); } void cudak_(cuda_decompress)(const Matrix *a, Matrix *b) { dim3 threadsPerBlock(1, CUDA_THREADS_NN); dim3 numBlocks(1, CEIL_DIV(a->nrow, threadsPerBlock.y)); cudak_(decompress)<<>> \ (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), a->nrow, a->ncol, a->stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM)); cudaStreamSynchronize(0); } } #endif