local Recurrent = nerv.class('nerv.AffineRecurrentLayer', 'nerv.Layer') --id: string --global_conf: table --layer_conf: table --Get Parameters function Recurrent:__init(id, global_conf, layer_conf) self.id = id self.dim_in = layer_conf.dim_in self.dim_out = layer_conf.dim_out self.gconf = global_conf self.bp = self:find_param("bp", layer_conf, global_conf, nerv.BiasParam, {1, self.dim_out[1]}) --layer_conf.bp self.ltp_hh = self:find_param("ltp_hh", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[2], self.dim_out[1]}) --layer_conf.ltp_hh --from hidden to hidden self:check_dim_len(2, 1) self.direct_update = layer_conf.direct_update self.clip = layer_conf.clip --clip error in back_propagate end --Check parameter function Recurrent:init(batch_size) if (self.ltp_hh.trans:ncol() ~= self.bp.trans:ncol()) then nerv.error("mismatching dimensions of ltp and bp") end if (self.dim_in[1] ~= self.ltp_hh.trans:nrow() or self.dim_in[2] ~= self.ltp_hh.trans:nrow()) then nerv.error("mismatching dimensions of ltp and input") end if (self.dim_out[1] ~= self.bp.trans:ncol()) then nerv.error("mismatching dimensions of bp and output") end self.ltp_hh_grad = self.ltp_hh.trans:create() self.ltp_hh:train_init() self.bp:train_init() end function Recurrent:batch_resize(batch_size) -- do nothing end function Recurrent:update(bp_err, input, output) if self.direct_update == true then local ltp_hh = self.ltp_hh.trans local bp = self.bp.trans local gconf = self.gconf if (gconf.momentum > 0) then -- momentum gain local mmt_gain = 1.0 / (1.0 - gconf.momentum) local n = input[1]:nrow() * mmt_gain -- update corrections (accumulated errors) self.ltp_hh.correction:mul(input[2], bp_err[1], 1.0, gconf.momentum, 'T', 'N') self.bp.correction:add(self.bp.correction, bp_err[1]:colsum(), gconf.momentum, 1.0) -- perform update and weight decay ltp_hh:add(ltp_hh, self.ltp_hh.correction, 1.0 - gconf.lrate * gconf.wcost / gconf.batch_size, - gconf.lrate / n) bp:add(bp, self.bp.correction, 1.0 - gconf.lrate * gconf.wcost / gconf.batch_size, - gconf.lrate / n) else ltp_hh:mul(input[2], bp_err[1], - gconf.lrate / gconf.batch_size, 1.0 - gconf.wcost * gconf.lrate / gconf.batch_size, 'T', 'N') bp:add(bp, bp_err[1]:colsum(), 1.0 - gconf.lrate * gconf.wcost / gconf.batch_size, - gconf.lrate / gconf.batch_size) end else --self.ltp_hh_grad:mul(input[2], bp_err[1], 1.0, 0.0, 'T', 'N') self.ltp_hh:update_by_err_input(bp_err[1], input[2]) self.bp:update_by_gradient(bp_err[1]:colsum()) end end function Recurrent:propagate(input, output) output[1]:copy_fromd(input[1]) output[1]:mul(input[2], self.ltp_hh.trans, 1.0, 1.0, 'N', 'N') output[1]:add_row(self.bp.trans, 1.0) end function Recurrent:back_propagate(bp_err, next_bp_err, input, output) next_bp_err[1]:copy_fromd(bp_err[1]) next_bp_err[2]:mul(bp_err[1], self.ltp_hh.trans, 1.0, 0.0, 'N', 'T') --[[ for i = 0, next_bp_err[2]:nrow() - 1 do for j = 0, next_bp_err[2]:ncol() - 1 do if (next_bp_err[2][i][j] > 10) then next_bp_err[2][i][j] = 10 end if (next_bp_err[2][i][j] < -10) then next_bp_err[2][i][j] = -10 end end end ]]-- if (self.clip ~= nil) then next_bp_err[2]:clip(- self.clip, self.clip) end end function Recurrent:get_params() return nerv.ParamRepo({self.ltp_hh, self.bp}) end