require 'kaldi_io' gconf = {lrate = 0.8, wcost = 1e-6, momentum = 0.9, frm_ext = 5, chunk_size = 1, tr_scp = "ark:/speechlab/tools/KALDI/kaldi-master/src/featbin/copy-feats " .. "scp:/speechlab/users/mfy43/timit/s5/exp/dnn4_nerv_dnn/train.scp ark:- |", cv_scp = "ark:/speechlab/tools/KALDI/kaldi-master/src/featbin/copy-feats " .. "scp:/speechlab/users/mfy43/timit/s5/exp/dnn4_nerv_dnn/cv.scp ark:- |", ali = {targets_rspecifier = "ark:/speechlab/tools/KALDI/kaldi-master/src/bin/ali-to-pdf " .. "/speechlab/users/mfy43/timit/s5/exp/tri3_ali/final.mdl " .. "\"ark:gunzip -c /speechlab/users/mfy43/timit/s5/exp/tri3_ali/ali.*.gz |\" " .. "ark:- | " .. "/speechlab/tools/KALDI/kaldi-master/src/bin/ali-to-post " .. "ark:- ark:- |"}, initialized_param = {"/speechlab/users/mfy43/timit/s5/exp/dnn4_nerv_dnn/nnet_init.nerv", "/speechlab/users/mfy43/timit/s5/exp/dnn4_nerv_dnn/nnet_output.nerv", "/speechlab/users/mfy43/timit/s5/exp/dnn4_nerv_dnn/nnet_trans.nerv"}, -- params in nnet_trans.nerv are included in the trained model decode_param = {"/speechlab/users/mfy43/timit/s5/nerv_2016-05-06_17:40:54/2016-05-06_19:44:43_iter_20_lr0.012500_tr0.867_cv1.464.nerv"} } local input_size = 440 local output_size = 1959 local hidden_size = 1024 local trainer = nerv.Trainer function trainer:make_layer_repo(param_repo) local layer_repo = nerv.LayerRepo( { -- global transf ["nerv.BiasLayer"] = { blayer1 = {dim_in = {input_size}, dim_out = {input_size}, params = {bias = "bias0"}, no_update_all = true} }, ["nerv.WindowLayer"] = { wlayer1 = {dim_in = {input_size}, dim_out = {input_size}, params = {window = "window0"}, no_update_all = true} }, -- biased linearity ["nerv.AffineLayer"] = { affine0 = {dim_in = {input_size}, dim_out = {hidden_size}, params = {ltp = "affine0_ltp", bp = "affine0_bp"}}, affine1 = {dim_in = {hidden_size}, dim_out = {hidden_size}, params = {ltp = "affine1_ltp", bp = "affine1_bp"}}, affine2 = {dim_in = {hidden_size}, dim_out = {hidden_size}, params = {ltp = "affine2_ltp", bp = "affine2_bp"}}, affine3 = {dim_in = {hidden_size}, dim_out = {hidden_size}, params = {ltp = "affine3_ltp", bp = "affine3_bp"}}, affine4 = {dim_in = {hidden_size}, dim_out = {hidden_size}, params = {ltp = "affine4_ltp", bp = "affine4_bp"}}, affine5 = {dim_in = {hidden_size}, dim_out = {hidden_size}, params = {ltp = "affine5_ltp", bp = "affine5_bp"}}, affine6 = {dim_in = {hidden_size}, dim_out = {output_size}, params = {ltp = "affine6_ltp", bp = "affine6_bp"}} }, ["nerv.SigmoidLayer"] = { sigmoid0 = {dim_in = {hidden_size}, dim_out = {hidden_size}}, sigmoid1 = {dim_in = {hidden_size}, dim_out = {hidden_size}}, sigmoid2 = {dim_in = {hidden_size}, dim_out = {hidden_size}}, sigmoid3 = {dim_in = {hidden_size}, dim_out = {hidden_size}}, sigmoid4 = {dim_in = {hidden_size}, dim_out = {hidden_size}}, sigmoid5 = {dim_in = {hidden_size}, dim_out = {hidden_size}} }, ["nerv.SoftmaxCELayer"] = -- softmax + ce criterion layer for finetune output { ce_crit = {dim_in = {output_size, 1}, dim_out = {1}, compressed = true} }, ["nerv.SoftmaxLayer"] = -- softmax for decode output { softmax = {dim_in = {output_size}, dim_out = {output_size}} } }, param_repo, gconf) layer_repo:add_layers( { ["nerv.GraphLayer"] = { global_transf = { dim_in = {input_size}, dim_out = {input_size}, layer_repo = layer_repo, connections = { {"[1]", "blayer1[1]", 0}, {"blayer1[1]", "wlayer1[1]", 0}, {"wlayer1[1]", "[1]", 0} } }, main = { dim_in = {input_size}, dim_out = {output_size}, layer_repo = layer_repo, connections = { {"[1]", "affine0[1]", 0}, {"affine0[1]", "sigmoid0[1]", 0}, {"sigmoid0[1]", "affine1[1]", 0}, {"affine1[1]", "sigmoid1[1]", 0}, {"sigmoid1[1]", "affine2[1]", 0}, {"affine2[1]", "sigmoid2[1]", 0}, {"sigmoid2[1]", "affine3[1]", 0}, {"affine3[1]", "sigmoid3[1]", 0}, {"sigmoid3[1]", "affine4[1]", 0}, {"affine4[1]", "sigmoid4[1]", 0}, {"sigmoid4[1]", "affine5[1]", 0}, {"affine5[1]", "sigmoid5[1]", 0}, {"sigmoid5[1]", "affine6[1]", 0}, {"affine6[1]", "[1]", 0} } } } }, param_repo, gconf) layer_repo:add_layers( { ["nerv.GraphLayer"] = { ce_output = { dim_in = {input_size, 1}, dim_out = {1}, layer_repo = layer_repo, connections = { {"[1]", "global_transf[1]", 0}, {"global_transf[1]", "main[1]", 0}, {"main[1]", "ce_crit[1]", 0}, {"[2]", "ce_crit[2]", 0}, {"ce_crit[1]", "[1]", 0} } }, softmax_output = { dim_in = {input_size}, dim_out = {output_size}, layer_repo = layer_repo, connections = { {"[1]", "global_transf[1]", 0}, {"global_transf[1]", "main[1]", 0}, {"main[1]", "softmax[1]", 0}, {"softmax[1]", "[1]", 0} } } } }, param_repo, gconf) return layer_repo end function trainer:get_network(layer_repo) return layer_repo:get_layer("ce_output") end function trainer:get_readers(dataset) local function reader_gen(scp, ali) return {{reader = nerv.KaldiReader(gconf, { id = "main_scp", feature_rspecifier = scp, frm_ext = gconf.frm_ext, mlfs = { phone_state = ali } }), data = {main_scp = input_size, phone_state = 1}}} end if dataset == 'train' then return reader_gen(gconf.tr_scp, gconf.tr_ali or gconf.ali) elseif dataset == 'validate' then return reader_gen(gconf.cv_scp, gconf.cv_ali or gconf.ali) else nerv.error('no such dataset') end end function trainer:get_input_order() return {"main_scp", "phone_state"} end function trainer:get_decode_network(layer_repo) return layer_repo:get_layer("softmax_output") end function trainer:make_decode_readers(scp_file) return {{reader = nerv.KaldiReader(gconf, { id = "main_scp", feature_rspecifier = scp_file, frm_ext = gconf.frm_ext, mlfs = {} }), data = {main_scp = input_size, phone_state = 1}}} end function trainer:get_decode_input_order() return {"main_scp"} end function trainer:get_error() local ce_crit = self.layer_repo:get_layer("ce_crit") return ce_crit.total_ce / ce_crit.total_frames end function trainer:mini_batch_afterprocess(cnt, info) if cnt % 1000 == 0 then self:epoch_afterprocess() end end function trainer:epoch_afterprocess() local ce_crit = self.layer_repo:get_layer("ce_crit") nerv.info("*** training stat begin ***") nerv.printf("cross entropy:\t\t%.8f\n", ce_crit.total_ce) nerv.printf("correct:\t\t%d\n", ce_crit.total_correct) nerv.printf("frames:\t\t\t%d\n", ce_crit.total_frames) nerv.printf("err/frm:\t\t%.8f\n", ce_crit.total_ce / ce_crit.total_frames) nerv.printf("accuracy:\t\t%.3f%%\n", ce_crit.total_correct / ce_crit.total_frames * 100) nerv.info("*** training stat end ***") end