require 'lmptb.lmvocab' require 'lmptb.lmfeeder' require 'lmptb.lmutil' require 'lmptb.layer.init' --require 'tnn.init' require 'lmptb.lmseqreader' require 'lm_trainer' --[[global function rename]]-- --local printf = nerv.printf local LMTrainer = nerv.LMTrainer --[[global function rename ends]]-- --global_conf: table --first_time: bool --Returns: a ParamRepo function prepare_parameters(global_conf, iter) nerv.printf("%s preparing parameters...\n", global_conf.sche_log_pre) global_conf.paramRepo = nerv.ParamRepo() local paramRepo = global_conf.paramRepo if iter == -1 then --first time nerv.printf("%s first time, prepare some pre-set parameters, and leaving other parameters to auto-generation...\n", global_conf.sche_log_pre) local f = nerv.ChunkFile(global_conf.param_fn .. '.0', 'w') f:close() --[[ ltp_ih = nerv.LinearTransParam("ltp_ih", global_conf) ltp_ih.trans = global_conf.cumat_type(global_conf.vocab:size(), global_conf.hidden_size) --index 0 is for zero, others correspond to vocab index(starting from 1) ltp_ih.trans:generate(global_conf.param_random) ltp_hh = nerv.LinearTransParam("ltp_hh", global_conf) ltp_hh.trans = global_conf.cumat_type(global_conf.hidden_size, global_conf.hidden_size) ltp_hh.trans:generate(global_conf.param_random) --ltp_ho = nerv.LinearTransParam("ltp_ho", global_conf) --ltp_ho.trans = global_conf.cumat_type(global_conf.hidden_size, global_conf.vocab:size()) --ltp_ho.trans:generate(global_conf.param_random) bp_h = nerv.BiasParam("bp_h", global_conf) bp_h.trans = global_conf.cumat_type(1, global_conf.hidden_size) bp_h.trans:generate(global_conf.param_random) --bp_o = nerv.BiasParam("bp_o", global_conf) --bp_o.trans = global_conf.cumat_type(1, global_conf.vocab:size()) --bp_o.trans:generate(global_conf.param_random) local f = nerv.ChunkFile(global_conf.param_fn .. '.0', 'w') f:write_chunk(ltp_ih) f:write_chunk(ltp_hh) --f:write_chunk(ltp_ho) f:write_chunk(bp_h) --f:write_chunk(bp_o) f:close() ]]-- return nil end nerv.printf("%s loading parameter from file %s...\n", global_conf.sche_log_pre, global_conf.param_fn .. '.' .. tostring(iter)) paramRepo:import({global_conf.param_fn .. '.' .. tostring(iter)}, nil, global_conf) nerv.printf("%s preparing parameters end.\n", global_conf.sche_log_pre) return nil end --global_conf: table --Returns: nerv.LayerRepo function prepare_layers(global_conf) nerv.printf("%s preparing layers...\n", global_conf.sche_log_pre) local pr = global_conf.paramRepo local du = false --local recurrentLconfig = {{["bp"] = "bp_h", ["ltp_hh"] = "ltp_hh"}, {["dim_in"] = {global_conf.hidden_size, global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}, ["break_id"] = global_conf.vocab:get_sen_entry().id, ["independent"] = global_conf.independent, ["clip"] = 10}} --local recurrentLconfig = {{}, {["dim_in"] = {global_conf.hidden_size, global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}, ["clip"] = 10, ["direct_update"] = du, ["pr"] = pr}} local layers = { ["nerv.LSTMLayerT"] = { ["lstmL1"] = {{}, {["dim_in"] = {global_conf.hidden_size, global_conf.hidden_size, global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size, global_conf.hidden_size}, ["pr"] = pr}}, }, ["nerv.DropoutLayerT"] = { ["dropoutL1"] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}}}, }, ["nerv.SelectLinearLayer"] = { ["selectL1"] = {{}, {["dim_in"] = {1}, ["dim_out"] = {global_conf.hidden_size}, ["vocab"] = global_conf.vocab, ["pr"] = pr}}, }, ["nerv.CombinerLayer"] = { ["combinerL1"] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size, global_conf.hidden_size}, ["lambda"] = {1}}}, }, ["nerv.AffineLayer"] = { ["outputL"] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.vocab:size()}, ["direct_update"] = du, ["pr"] = pr}}, }, ["nerv.SoftmaxCELayerT"] = { ["softmaxL"] = {{}, {["dim_in"] = {global_conf.vocab:size(), global_conf.vocab:size()}, ["dim_out"] = {1}}}, }, } for l = 2, global_conf.layer_num do layers["nerv.DropoutLayerT"]["dropoutL" .. l] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}}} layers["nerv.LSTMLayerT"]["lstmL" .. l] = {{}, {["dim_in"] = {global_conf.hidden_size, global_conf.hidden_size, global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size, global_conf.hidden_size}, ["pr"] = pr}} layers["nerv.CombinerLayer"]["combinerL" .. l] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size, global_conf.hidden_size}, ["lambda"] = {1}}} end --[[ --we do not need those in the new tnn framework printf("%s adding %d bptt layers...\n", global_conf.sche_log_pre, global_conf.bptt) for i = 1, global_conf.bptt do layers["nerv.IndRecurrentLayer"]["recurrentL" .. (i + 1)] = recurrentLconfig layers["nerv.SigmoidLayer"]["sigmoidL" .. (i + 1)] = {{}, {["dim_in"] = {global_conf.hidden_size}, ["dim_out"] = {global_conf.hidden_size}}} layers["nerv.SelectLinearLayer"]["selectL" .. (i + 1)] = {{["ltp"] = "ltp_ih"}, {["dim_in"] = {1}, ["dim_out"] = {global_conf.hidden_size}}} end --]] local layerRepo = nerv.LayerRepo(layers, pr, global_conf) nerv.printf("%s preparing layers end.\n", global_conf.sche_log_pre) return layerRepo end --global_conf: table --layerRepo: nerv.LayerRepo --Returns: a nerv.TNN function prepare_tnn(global_conf, layerRepo) nerv.printf("%s Generate and initing TNN ...\n", global_conf.sche_log_pre) --input: input_w, input_w, ... input_w_now, last_activation local connections_t = { {"[1]", "selectL1[1]", 0}, --{"selectL1[1]", "recurrentL1[1]", 0}, --{"recurrentL1[1]", "sigmoidL1[1]", 0}, --{"sigmoidL1[1]", "combinerL1[1]", 0}, --{"combinerL1[1]", "recurrentL1[2]", 1}, {"selectL1[1]", "lstmL1[1]", 0}, {"lstmL1[2]", "lstmL1[3]", 1}, {"lstmL1[1]", "combinerL1[1]", 0}, {"combinerL1[1]", "lstmL1[2]", 1}, {"combinerL1[2]", "dropoutL1[1]", 0}, {"dropoutL"..global_conf.layer_num.."[1]", "outputL[1]", 0}, {"outputL[1]", "softmaxL[1]", 0}, {"[2]", "softmaxL[2]", 0}, {"softmaxL[1]", "[1]", 0} } for l = 2, global_conf.layer_num do table.insert(connections_t, {"dropoutL"..(l-1).."[1]", "lstmL"..l.."[1]", 0}) table.insert(connections_t, {"lstmL"..l.."[2]", "lstmL"..l.."[3]", 1}) table.insert(connections_t, {"lstmL"..l.."[1]", "combinerL"..l.."[1]", 0}) table.insert(connections_t, {"combinerL"..l.."[1]", "lstmL"..l.."[2]", 1}) table.insert(connections_t, {"combinerL"..l.."[2]", "dropoutL"..l.."[1]", 0}) end --[[ printf("%s printing DAG connections:\n", global_conf.sche_log_pre) for key, value in pairs(connections_t) do printf("\t%s->%s\n", key, value) end ]]-- local tnn = nerv.TNN("TNN", global_conf, {["dim_in"] = {1, global_conf.vocab:size()}, ["dim_out"] = {1}, ["sub_layers"] = layerRepo, ["connections"] = connections_t, ["clip_t"] = global_conf.clip_t, }) tnn:init(global_conf.batch_size, global_conf.chunk_size) nerv.printf("%s Initing TNN end.\n", global_conf.sche_log_pre) return tnn end function load_net(global_conf, next_iter) prepare_parameters(global_conf, next_iter) local layerRepo = prepare_layers(global_conf) local tnn = prepare_tnn(global_conf, layerRepo) return tnn end local train_fn, valid_fn, test_fn global_conf = {} local set = arg[1] --"test" if (set == "ptb") then root_dir = '/home/slhome/txh18/workspace' data_dir = root_dir .. '/ptb/DATA' train_fn = data_dir .. '/ptb.train.txt.adds' valid_fn = data_dir .. '/ptb.valid.txt.adds' test_fn = data_dir .. '/ptb.test.txt.adds' vocab_fn = data_dir .. '/vocab' qdata_dir = root_dir .. '/ptb/questionGen/gen' global_conf = { lrate = 0.15, wcost = 1e-5, momentum = 0, clip_t = 5, cumat_type = nerv.CuMatrixFloat, mmat_type = nerv.MMatrixFloat, nn_act_default = 0, hidden_size = 300, layer_num = 1, chunk_size = 15, batch_size = 20, max_iter = 35, lr_decay = 1.003, decay_iter = 10, param_random = function() return (math.random() / 5 - 0.1) end, dropout_str = "0.5", train_fn = train_fn, valid_fn = valid_fn, test_fn = test_fn, vocab_fn = vocab_fn, max_sen_len = 90, sche_log_pre = "[SCHEDULER]:", log_w_num = 40000, --give a message when log_w_num words have been processed timer = nerv.Timer(), work_dir_base = '/home/slhome/txh18/workspace/ptb/EXP-nerv/lstmlm_v1.0' } elseif (set == "msr_sc") then data_dir = '/home/slhome/txh18/workspace/sentenceCompletion/DATA_PV2' train_fn = data_dir .. '/normed_all.sf.len60.adds.train' valid_fn = data_dir .. '/normed_all.sf.len60.adds.dev' test_fn = data_dir .. '/answer_normed.adds' vocab_fn = data_dir .. '/normed_all.choose.vocab30000.addqvocab' global_conf = { lrate = 1, wcost = 1e-6, momentum = 0, cumat_type = nerv.CuMatrixFloat, mmat_type = nerv.MMatrixFloat, nn_act_default = 0, hidden_size = 300, layer_num = 1, chunk_size = 15, batch_size = 10, max_iter = 30, decay_iter = 10, lr_decay = 1.003, param_random = function() return (math.random() / 5 - 0.1) end, dropout_str = "0", train_fn = train_fn, valid_fn = valid_fn, test_fn = test_fn, vocab_fn = vocab_fn, sche_log_pre = "[SCHEDULER]:", log_w_num = 400000, --give a message when log_w_num words have been processed timer = nerv.Timer(), work_dir_base = '/home/slhome/txh18/workspace/sentenceCompletion/EXP-Nerv/rnnlm_test' } elseif (set == "twitter") then root_dir = '/home/slhome/txh18/workspace' data_dir = root_dir .. '/twitter_new/DATA' train_fn = data_dir .. '/twitter.choose.adds' valid_fn = data_dir .. '/twitter.valid.adds' test_fn = data_dir .. '/comm.test.choose-ppl.adds' vocab_fn = data_dir .. '/twitter.choose.train.vocab' --qdata_dir = root_dir .. '/ptb/questionGen/gen' global_conf = { lrate = 0.15, wcost = 1e-5, momentum = 0, clip_t = 5, cumat_type = nerv.CuMatrixFloat, mmat_type = nerv.MMatrixFloat, nn_act_default = 0, hidden_size = 300, layer_num = 1, chunk_size = 15, batch_size = 20, max_iter = 35, lr_decay = 1.003, decay_iter = 10, param_random = function() return (math.random() / 5 - 0.1) end, dropout_str = "0", train_fn = train_fn, valid_fn = valid_fn, test_fn = test_fn, vocab_fn = vocab_fn, max_sen_len = 90, sche_log_pre = "[SCHEDULER]:", log_w_num = 40000, --give a message when log_w_num words have been processed timer = nerv.Timer(), work_dir_base = root_dir .. '/twitter_new/EXP-nerv/lstmlm_v1.0' } else valid_fn = '/home/slhome/txh18/workspace/nerv/nerv/nerv/examples/lmptb/m-tests/some-text-chn' train_fn = '/home/slhome/txh18/workspace/nerv/nerv/nerv/examples/lmptb/m-tests/some-text-chn' test_fn = '/home/slhome/txh18/workspace/nerv/nerv/nerv/examples/lmptb/m-tests/some-text-chn' vocab_fn = '/home/slhome/txh18/workspace/nerv/nerv/nerv/examples/lmptb/m-tests/some-text-chn' global_conf = { lrate = 0.01, wcost = 1e-5, momentum = 0, cumat_type = nerv.CuMatrixFloat, mmat_type = nerv.MMatrixFloat, nn_act_default = 0, hidden_size = 20, layer_num = 1, chunk_size = 2, batch_size = 10, max_iter = 3, param_random = function() return (math.random() / 5 - 0.1) end, dropout_str = "0", train_fn = train_fn, valid_fn = valid_fn, test_fn = test_fn, max_sen_len = 80, lr_decay = 1.003, decay_iter = 10, vocab_fn = vocab_fn, sche_log_pre = "[SCHEDULER]:", log_w_num = 10, --give a message when log_w_num words have been processed timer = nerv.Timer(), work_dir_base = '/home/slhome/txh18/workspace/nerv/play/testEXP/tnn_lstmlm_test' } end lr_half = false --can not be local, to be set by loadstring start_iter = -1 start_lr = global_conf.lrate ppl_last = 100000 commands_str = "train:test" commands = {} test_iter = -1 --for testout(question) q_file = "ptb.test.txt.q10rs1_Msss.adds" if arg[2] ~= nil then nerv.printf("%s applying arg[2](%s)...\n", global_conf.sche_log_pre, arg[2]) loadstring(arg[2])() nerv.LMUtil.wait(0.5) else nerv.printf("%s no user setting, all default...\n", global_conf.sche_log_pre) end global_conf.work_dir = global_conf.work_dir_base .. 'h' .. global_conf.hidden_size .. 'l' .. global_conf.layer_num .. 'ch' .. global_conf.chunk_size .. 'ba' .. global_conf.batch_size .. 'slr' .. global_conf.lrate .. 'wc' .. global_conf.wcost .. 'dr' .. global_conf.dropout_str global_conf.train_fn_shuf = global_conf.work_dir .. '/train_fn_shuf' global_conf.train_fn_shuf_bak = global_conf.train_fn_shuf .. '_bak' global_conf.param_fn = global_conf.work_dir .. "/params" global_conf.dropout_list = nerv.SUtil.parse_schedule(global_conf.dropout_str) global_conf.log_fn = global_conf.work_dir .. '/log_lstm_tnn_' .. commands_str ..os.date("_TT%m_%d_%X",os.time()) global_conf.log_fn, _ = string.gsub(global_conf.log_fn, ':', '-') commands = nerv.SUtil.parse_commands_set(commands_str) global_conf.lrate = start_lr nerv.printf("%s creating work_dir(%s)...\n", global_conf.sche_log_pre, global_conf.work_dir) nerv.LMUtil.wait(2) os.execute("mkdir -p "..global_conf.work_dir) os.execute("cp " .. global_conf.train_fn .. " " .. global_conf.train_fn_shuf) --redirecting log outputs! nerv.SUtil.log_redirect(global_conf.log_fn) nerv.LMUtil.wait(2) ----------------printing options--------------------------------- nerv.printf("%s printing global_conf...\n", global_conf.sche_log_pre) for id, value in pairs(global_conf) do nerv.printf("%s:\t%s\n", id, tostring(value)) end nerv.LMUtil.wait(2) nerv.printf("%s printing training scheduling options...\n", global_conf.sche_log_pre) nerv.printf("lr_half:\t%s\n", tostring(lr_half)) nerv.printf("start_iter:\t%s\n", tostring(start_iter)) nerv.printf("ppl_last:\t%s\n", tostring(ppl_last)) nerv.printf("commands_str:\t%s\n", commands_str) nerv.printf("test_iter:\t%s\n", tostring(test_iter)) nerv.printf("%s printing training scheduling end.\n", global_conf.sche_log_pre) nerv.LMUtil.wait(2) ------------------printing options end------------------------------ math.randomseed(1) local vocab = nerv.LMVocab() global_conf["vocab"] = vocab nerv.printf("%s building vocab...\n", global_conf.sche_log_pre) global_conf.vocab:build_file(global_conf.vocab_fn, false) ppl_rec = {} local final_iter = -1 if commands["train"] == 1 then if start_iter == -1 then prepare_parameters(global_conf, -1) --write pre_generated params to param.0 file end if start_iter == -1 or start_iter == 0 then nerv.printf("===INITIAL VALIDATION===\n") local tnn = load_net(global_conf, 0) global_conf.paramRepo = tnn:get_params() --get auto-generted params global_conf.paramRepo:export(global_conf.param_fn .. '.0', nil) --some parameters are auto-generated, saved again to param.0 file global_conf.dropout_rate = 0 local result = LMTrainer.lm_process_file_rnn(global_conf, global_conf.valid_fn, tnn, false) --false update! nerv.LMUtil.wait(1) ppl_rec[0] = {} ppl_rec[0].valid = result:ppl_all("rnn") ppl_last = ppl_rec[0].valid ppl_rec[0].train = 0 ppl_rec[0].test = 0 ppl_rec[0].lr = 0 start_iter = 1 nerv.printf("\n") end for iter = start_iter, global_conf.max_iter, 1 do final_iter = iter --for final testing global_conf.sche_log_pre = "[SCHEDULER ITER"..iter.." LR"..global_conf.lrate.."]:" tnn = load_net(global_conf, iter - 1) nerv.printf("===ITERATION %d LR %f===\n", iter, global_conf.lrate) global_conf.dropout_rate = nerv.SUtil.sche_get(global_conf.dropout_list, iter) result = LMTrainer.lm_process_file_rnn(global_conf, global_conf.train_fn_shuf, tnn, true) --true update! global_conf.dropout_rate = 0 ppl_rec[iter] = {} ppl_rec[iter].train = result:ppl_all("rnn") --shuffling training file nerv.printf("%s shuffling training file\n", global_conf.sche_log_pre) os.execute('cp ' .. global_conf.train_fn_shuf .. ' ' .. global_conf.train_fn_shuf_bak) os.execute('cat ' .. global_conf.train_fn_shuf_bak .. ' | sort -R --random-source=/dev/zero > ' .. global_conf.train_fn_shuf) nerv.printf("===PEEK ON TEST %d===\n", iter) result = LMTrainer.lm_process_file_rnn(global_conf, global_conf.test_fn, tnn, false) --false update! ppl_rec[iter].test = result:ppl_all("rnn") nerv.printf("===VALIDATION %d===\n", iter) result = LMTrainer.lm_process_file_rnn(global_conf, global_conf.valid_fn, tnn, false) --false update! ppl_rec[iter].valid = result:ppl_all("rnn") ppl_rec[iter].lr = global_conf.lrate if ((ppl_last / ppl_rec[iter].valid < global_conf.lr_decay or lr_half == true) and iter > global_conf.decay_iter) then global_conf.lrate = (global_conf.lrate * 0.6) end if ppl_rec[iter].valid < ppl_last then nerv.printf("%s PPL improves, saving net to file %s.%d...\n", global_conf.sche_log_pre, global_conf.param_fn, iter) global_conf.paramRepo:export(global_conf.param_fn .. '.' .. tostring(iter), nil) else nerv.printf("%s PPL did not improve, rejected, copying param file of last iter...\n", global_conf.sche_log_pre) os.execute('cp ' .. global_conf.param_fn..'.'..tostring(iter - 1) .. ' ' .. global_conf.param_fn..'.'..tostring(iter)) end if ppl_last / ppl_rec[iter].valid < global_conf.lr_decay or lr_half == true then lr_half = true end if ppl_rec[iter].valid < ppl_last then ppl_last = ppl_rec[iter].valid end nerv.printf("\n") nerv.LMUtil.wait(2) end nerv.info("saving final nn to param.final") os.execute('cp ' .. global_conf.param_fn .. '.' .. tostring(final_iter) .. ' ' .. global_conf.param_fn .. '.final') nerv.printf("===VALIDATION PPL record===\n") for i, _ in pairs(ppl_rec) do nerv.printf(" \n", i, ppl_rec[i].lr, ppl_rec[i].train, ppl_rec[i].valid, ppl_rec[i].test) end nerv.printf("\n") end --if commands["train"] if commands["test"] == 1 then nerv.printf("===FINAL TEST===\n") global_conf.sche_log_pre = "[SCHEDULER FINAL_TEST]:" if final_iter ~= -1 and test_iter == -1 then test_iter = final_iter end if test_iter == -1 then test_iter = "final" end tnn = load_net(global_conf, test_iter) global_conf.dropout_rate = 0 LMTrainer.lm_process_file_rnn(global_conf, global_conf.test_fn, tnn, false) --false update! end --if commands["test"] if commands["testout"] == 1 then nerv.printf("===TEST OUT===\n") nerv.printf("q_file:\t%s\n", q_file) local q_fn = qdata_dir .. '/' .. q_file global_conf.sche_log_pre = "[SCHEDULER TESTOUT]:" if final_iter ~= -1 and test_iter == -1 then test_iter = final_iter end if test_iter == -1 then test_iter = "final" end tnn = load_net(global_conf, test_iter) global_conf.dropout_rate = 0 LMTrainer.lm_process_file_rnn(global_conf, q_fn, tnn, false, {["one_sen_report"] = true}) --false update! end --if commands["testout"]