#The Nerv Matrix Package# Part of the [Nerv](../README.md) toolkit. ##Description## ###Underlying structure### In the begining is could be useful to know something about the underlying structure of a __Nerv__ matrix. Please keep in mind that matrice in __Nerv__ is row-major. Every matrix object is a encapsulation of a C struct that describes the attributes of this matrix. ``` typedef struct Matrix { size_t stride; /* size of a row */ long ncol, nrow, nmax; /* dimension of the matrix, nmax is simply nrow * ncol */ union { float *f; double *d; long *i; } data; /* pointer to actual storage */ long *data_ref; } Matrix; ``` It is worth mentioning that that `data_ref` is a counter which counts the number of references to its memory space, mind that it will also be increased when a row of the matrix is referenced(`col = m[2]`). A __Nerv__ matrix will deallocate its space when this counter is decreased to zero. Also note that all assigning operation in __Nerv__ is reference copy, you can use `copy_tod` or `copy_toh` method to copy value. Also, row assigning operations like `m1[2]=m2[3]` is forbidden in __Nerv__. ###Class hierarchy### The class hierarchy of the matrix classes can be clearly observed in `matrix/init.c`. First there is a abstract base class __Nerv.Matrix__, which is inherited by __Nerv.CuMatrix__ and __Nerv.MMatrix__(also abstract). Finally, there is __Nerv.CuMatrixFloat__, __Nerv.CuMatrixDouble__, inheriting __Nerv.CuMatrix__, and __Nerv.MMatrixFloat__, __Nerv.MMatrixDouble__, __Nerv.MMatrixInt__ , inheriting __Nerv.MMatrix__. ##Methods## Mind that usually a matrix object can only do calculation with matrix of its own type(a __Nerv.CuMatrixFloat__ matrix can only do add operation with a __Nerv.CuMatrixFloat__). In the methods description below, __Matrix__ could be __Nerv.CuMatrixFloat__, __Nerv.CuMatrixDouble__, __Nerv.MMatrixFloat__ or __Nerv.MMatrixDouble__. __Element_type__ could be `float` or `double`, respectively. * __Matrix = Matrix(int nrow, int ncol)__ Returns a __Matrix__ object of `nrow` rows and `ncol` columns. * __Element_type = Matrix.get_elem(Matrix self, int index)__ Returns the element value at the specific index(treating the matrix as a vector). The index should be less than `nmax` of the matrix. * __void Matrix.set_elem(Matrix self, int index, Element_type value)__ Set the value at `index` to be `value`. * __int Matrix.ncol(Matrix self)__ Get `ncol`, the number of columns. * __int Matrix.nrow(Matrix self)__ Get `nrow`, the number of rows. * __int Matrix.get_dataref_value(Matrix self)__ Returns the value(not a pointer) of space the `data_ref` pointer pointed to. This function is mainly for debugging. * __Matrix/Element\_type, boolean Matrix.\_\_index\_\_(Matrix self, int index)__ If the matrix has more than one row, will return the row at `index` as a __Matrix__ . Otherwise it will return the value at `index`. * __void Matrix.\_\_newindex\_\_(Matrix self, int index, Element_type value)__ Set the element at `index` to be `value`. --- * __Matrix Matrix.create(Matrix a)__ Return a new __Matrix__ of `a`'s size(of the same number of rows and columns). * __Matrix Matrix.colsum(Matrix self)__ Return a new __Matrix__ of size (1,`self.ncol`), which stores the sum of all columns of __Matrix__ `self`. * __Matrix Matrix.rowsum(Matrix self)__ Return a new __Matrix__ of size (`self.nrow`,1), which stores the sum of all rows of __Matrix__ `self`. * __Matrix Matrix.rowmax(Matrix self)__ Return a new __Matrix__ of size (`self.nrow`,1), which stores the max value of all rows of __Matrix__ `self`. * __Matrix Matrix.trans(Matrix self)__ Return a new __Matrix__ of size (`self.ncol`,`self.nrow`), which stores the transpose of __Matrix__ `self`. * __void Matrix.copy_fromh(Matrix self, MMatrix a)__ Copy the content of a __MMatrix__ `a` to __Matrix__ `self`, they should be of the same size. * __void Matrix.copy_fromd(Matrix self, CuMatrix a)__ Copy the content of a __CuMatrix__ `a` to __Matrix__ `self`, they should be of the same size. * __void Matrix.copy_toh(Matrix self, MMatrix a)__ Copy the content of the __Matrix__ `self` to a __MMatrix__ `a`. * __void Matrix.copy_tod(Matrix self, CuMatrix a)__ Copy the content of the __Matrix__ `self` to a __CuMatrix__ `a`. * __void Matrix.add(Matrix self, Matrix ma, Matrix mb, Element_type alpha, Element_type beta)__ It sets the content of __Matrix__ `self` to be `alpha * ma + beta * mb`.__Matrix__ `ma,mb,self` should be of the same size. * __void Matrix.mul(Matrix self, Matrix ma, Matrix mb, Element_type alpha, Element_type beta, [string ta, string tb])__ It sets the content of __Matrix__ `self` to be `beta * self + alpha * ma * mb`. `ta` and `tb` is optional, if `ta` is 'T', then `ma` will be transposed, also if `tb` is 'T', `mb` will be transposed. * __void Matrix.add_row(Matrix self, Matrix va, Element_type beta)__ Add `beta * va` to every row of __Matrix__ `self`. * __void Matrix.fill(Matrix self, Element_type value)__ Fill the content of __Matrix__ `self` to be `value`. * __void Matrix.sigmoid(Matrix self, Matrix ma)__ Set the element of __Matrix__ `self` to be elementwise-sigmoid of `ma`. * __void Matrix.sigmoid_grad(Matrix self, Matrix err, Matrix output)__ Set the element of __Matrix__ `self`, to be `self[i][j]=err[i][j]*output[i][j]*(1-output[i][j])`. This function is used to propagate sigmoid layer error. * __void Matrix.softmax(Matrix self, Matrix a)__ Calculate a row-by-row softmax of __Matrix__ `a` and save the result in `self`. * __void Matrix.mul_elem(Matrix self, Matrix ma, Matrix mb)__ Calculate element-wise multiplication of __Matrix__ `ma` and `mb`, store the result in `self`. * __void Matrix.log_elem(Matrix self, Matrix ma)__ Calculate element-wise log of __Matrix__ `ma`, store the result in `self`. * __void Matrix.copy_rows_fromh_by_idx(Matrix self, MMatrix ma, MMatrixInt idx)__ `idx` should be a row vector. This function copy the rows of `ma` to `self` according to `idx`, in other words, it assigns `ma[idx[i]]` to `self[i]`. * __void Matrix.expand_frm(Matrix self, Matrix a, int context)__ Treating each row of `a` as speech feature, and do a feature expansion. The `self` should of size `(a.nrow, a.ncol * (context * 2 + 1))`. `self[i]` will be `(a[i-context] a[i-context+1] ... a[i] a[i+1] a[i+context])`. `a[0]` and `a[nrow]` will be copied to extend the index range. * __void Matrix.rearrange_frm(Matrix self, Matrix a, int step)__ Rearrange `a` according to its feature dimension. The `step` is the length of context. So, `self[i][j]` will be assigned `a[i][j / step + (j % step) * (a.ncol / step)]`. `a` and `self` should be of the same size and `step` should be divisible by `a.ncol`. * __void Matrix.scale_row(Matrix self, Matrix scale)__ Scale each column of `self` according to a vector `scale`. `scale` should be of size `1 * self.ncol`. * __Matrix Matrix.\_\_add\_\_(Matrix ma, Matrix mb)__ Returns a new __Matrix__ which stores the result of `ma+mb`. * __Matrix Matrix.\_\_sub\_\_(Matrix ma, Matrix mb)__ Returns a new __Matrix__ which stores the result of `ma-mb`. * __Matrix Matrix.\_\_mul\_\_(Matrix ma, Matrix mb)__ Returns a new __Matrix__ which stores the result of `ma*mb`. * __CuMatrix CuMatrix.new_from_host(MMatrix m)__ Return a new __CuMatrix__ which is a copy of `m`. * __MMatrix CuMatrix.new_to_host(CuMatrix self)__ Return a new __MMatrix__ which is a copy of `self`. * __string Matrix.\_\_tostring\_\_(Matrix self)__ Returns a string containing values of __Matrix__ `self`. --- * __MMatrix MMatrix.load(ChunkData chunk)__ Return a new __MMatrix__ loaded from the file position in `chunk`. * __void MMatrix.save(MMatrix self, ChunkFileHandle chunk)__ Write `self` to the file position in `chunk`. * __void MMatrix.copy_from(MMatrix ma, MMatrix mb,[int b_bgein, int b_end, int a_begin])__ Copy a part of `mb`(rows of index `[b_begin..b_end)`) to `ma` beginning at row index `a_begin`. If not specified, `b_begin` will be `0`, `b_end` will be `b.nrow`, `a_begin` will be `0`. ##Examples## * Use `get_dataref_value` to test __Nerv__'s matrix space allocation. ``` m = 10 n = 10 fm = nerv.MMatrixFloat(m, n) dm = nerv.MMatrixDouble(m, n) for i = 0, m - 1 do for j = 0, n - 1 do t = i / (j + 1) fm[i][j] = t dm[i][j] = t end end print("test fm:get_dataref_value:", fm:get_dataref_value()) print("forced a garbade collect") collectgarbage("collect") print("test fm:get_dataref_value:", fm:get_dataref_value()) print(fm) print(dm) ``` * Test some __Matrix__ calculations. ``` m = 4 n = 4 fm = nerv.CuMatrixFloat(m, n) dm = nerv.CuMatrixDouble(m, n) for i = 0, m - 1 do for j = 0, n - 1 do -- local t = math.random(10) t = i / (j + 1) fm[i][j] = t dm[i][j] = t end end print(fm) fs = fm:create() fs:softmax(fm) -- print(fs) print(dm) ds = dm:create() ds:softmax(dm) -- print(ds) print(fs) print(fs + fs) print(ds + ds) print(fs - fs) print(ds - ds) a = fs:create() a:mul_elem(fs, fs) print(a) a:log_elem(fs) print(a) ```