local LinearTransParam = nerv.class('nerv.LinearTransParam', 'nerv.Param') local BiasParam = nerv.class('nerv.BiasParam', 'nerv.LinearTransParam') local AffineLayer = nerv.class('nerv.AffineLayer', 'nerv.Layer') function LinearTransParam:read(pcdata) self.trans = nerv.CuMatrixFloat.new_from_host(nerv.MMatrixFloat.load(pcdata)) end function LinearTransParam:write(pfhandle) self.trans:new_to_host():save(pfhandle) end function AffineLayer:__init(id, global_conf, ltp, bp) self.ltp = ltp self.bp = bp self.gconf = global_conf -- linear transform correction self.ltc = ltp:create() self.ltc:fill(0) -- bias correction self.bc = bp:create() self.bc:fill(0) end function nerv.AffineLayer:update(bp_err, input, output) -- momentum gain local mmt_gain = 1.0 / (1.0 - gconf.momentum); local n = input.nrow() * mmt_gain -- update corrections (accumulated errors) ltc:mul(input, bp_err, 1.0, gconf.momentum, 'T', 'N') bc:add(bc, bp_err:colsum(), gconf.momentum, 1.0) -- perform update ltp:add(lpc, ltc, 1.0, -gconf.lrate / n) bp:add(bp, bc, 1.0, -gconf.lrate / n) -- weight decay ltp:add(ltp, ltp, 1.0, -gconf.lrate * gconf.wcost) end function nerv.AffineLayer:propagate(input, output) -- apply linear transform output:mul(input, self.ltp, 'N', 'N') -- add bias output:add_row(self.bp, 1.0) end function nerv.AffineLayer:back_propagate(next_bp_err, bp_err, input, output) next_bp_err:mul(bp_err, self.ltp, 'N', 'T') end