From 5e407d74130accfbbf94d2cabcb03fc126a89410 Mon Sep 17 00:00:00 2001 From: Determinant Date: Wed, 24 Jun 2015 22:48:24 +0800 Subject: separate non-Lua part of matrix code to a dedicated dir --- nerv/lib/matrix/generic/cukernel.cu | 571 ++++++++++++++++++++++++++++++++++++ 1 file changed, 571 insertions(+) create mode 100644 nerv/lib/matrix/generic/cukernel.cu (limited to 'nerv/lib/matrix/generic/cukernel.cu') diff --git a/nerv/lib/matrix/generic/cukernel.cu b/nerv/lib/matrix/generic/cukernel.cu new file mode 100644 index 0000000..6111193 --- /dev/null +++ b/nerv/lib/matrix/generic/cukernel.cu @@ -0,0 +1,571 @@ +#ifdef NERV_GENERIC_CUKERNEL +#include +#include +#include "../matrix.h" +#include "cuda.h" +#include "float.h" +#define CUDA_THREADS_N 16 +#define CUDA_THREADS_NN ((CUDA_THREADS_N) * (CUDA_THREADS_N)) +#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b)) +__global__ void cudak_(log_elem)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + long idx; + MATRIX_ELEM tmp; + if (i >= nrow || j >= ncol) return; + idx = j + i * stride; + tmp = a[idx]; + if(tmp < FLT_MIN) tmp = FLT_MIN; + b[idx] = log(tmp); +} + +__global__ void cudak_(mul_elem)(const MATRIX_ELEM *a, const MATRIX_ELEM *b, + MATRIX_ELEM *c, + int nrow, int ncol, int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + long idx; + if (i >= nrow || j >= ncol) return; + idx = j + i * stride; + c[idx] = a[idx] * b[idx]; +} + +__global__ void cudak_(sigmoid)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + long idx; + if (i >= nrow || j >= ncol) return; + idx = j + i * stride; + b[idx] = 1.0 / (1.0 + exp(-a[idx])); +} + +__global__ void cudak_(sigmoid_grad)(const MATRIX_ELEM *output, + const MATRIX_ELEM *err, + MATRIX_ELEM *nerr, + int nrow, int ncol, int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + long idx; + if (i >= nrow || j >= ncol) return; + idx = j + i * stride; + nerr[idx] = output[idx] * (1.0 - output[idx]) * err[idx]; +} + +__global__ void cudak_(softmax_final)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + const MATRIX_ELEM *max, const MATRIX_ELEM *deno, + int nrow, int ncol, int stride, int mstride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + long idx; + if (i >= nrow || j >= ncol) return; + idx = j + i * stride; + b[idx] = exp(a[idx] - max[0 + i * mstride]) / deno[0 + i * mstride]; +} + +__global__ void cudak_(block_reduce_rowsum)(const MATRIX_ELEM *input, + MATRIX_ELEM *output, + const int istride, const int ostride, + const int n) { + extern __shared__ MATRIX_ELEM cudak_(arr)[]; + int j = blockIdx.x * blockDim.x + threadIdx.x; + cudak_(arr)[threadIdx.x] = j < n ? input[j + istride * blockIdx.y] : 0; + __syncthreads(); + for (int offset = blockDim.x >> 1; offset; offset >>= 1) + { + if (threadIdx.x < offset) + cudak_(arr)[threadIdx.x] += cudak_(arr)[threadIdx.x + offset]; + __syncthreads(); + } + if (threadIdx.x == 0) + output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; +} + +__global__ void cudak_(block_reduce_colsum)(const MATRIX_ELEM *input, + MATRIX_ELEM *output, + const int istride, const int ostride, + const int n) { + extern __shared__ MATRIX_ELEM cudak_(arr)[]; + int i = blockIdx.y * blockDim.y + threadIdx.y; + cudak_(arr)[threadIdx.y] = i < n ? input[blockIdx.x + istride * i] : 0; + __syncthreads(); + for (int offset = blockDim.y >> 1; offset; offset >>= 1) + { + if (threadIdx.y < offset) + cudak_(arr)[threadIdx.y] += cudak_(arr)[threadIdx.y + offset]; + __syncthreads(); + } + if (threadIdx.y == 0) + output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; +} + +__global__ void cudak_(block_reduce_colsame)(const MATRIX_ELEM *input, + const MATRIX_ELEM *ref_input, + MATRIX_ELEM *output, + const int istride, const int ostride, + const int n) { + extern __shared__ MATRIX_ELEM cudak_(arr)[]; + int i = blockIdx.y * blockDim.y + threadIdx.y; + cudak_(arr)[threadIdx.y] = (i < n && input[blockIdx.x + istride * i] == \ + ref_input[blockIdx.x + istride * i]) ? 1.0 : 0; + __syncthreads(); + for (int offset = blockDim.y >> 1; offset; offset >>= 1) + { + if (threadIdx.y < offset) + cudak_(arr)[threadIdx.y] += cudak_(arr)[threadIdx.y + offset]; + __syncthreads(); + } + if (threadIdx.y == 0) + output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; +} + +__global__ void cudak_(block_reduce_softmax_rowsum)(const MATRIX_ELEM *input, + MATRIX_ELEM *output, + const MATRIX_ELEM *max, + const int istride, const int ostride, + const int mstride, const int n) { + extern __shared__ MATRIX_ELEM cudak_(arr)[]; + int j = blockIdx.x * blockDim.x + threadIdx.x; + cudak_(arr)[threadIdx.x] = j < n ? exp(input[j + istride * blockIdx.y] - \ + max[0 + mstride * blockIdx.y]) : 0; + __syncthreads(); + for (int offset = blockDim.x >> 1; offset; offset >>= 1) + { + if (threadIdx.x < offset) + cudak_(arr)[threadIdx.x] += cudak_(arr)[threadIdx.x + offset]; + __syncthreads(); + } + if (threadIdx.x == 0) + output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; +} + +__global__ void cudak_(block_reduce_rowmax)(const MATRIX_ELEM *input, + MATRIX_ELEM *output, + const int istride, const int ostride, + const int n) { + extern __shared__ MATRIX_ELEM cudak_(arr)[]; + int j = blockIdx.x * blockDim.x + threadIdx.x; + cudak_(arr)[threadIdx.x] = j < n ? input[j + istride * blockIdx.y] : -FLT_MAX; + __syncthreads(); + for (int offset = blockDim.x >> 1; offset; offset >>= 1) + { + if (threadIdx.x < offset) + { + MATRIX_ELEM l = cudak_(arr)[threadIdx.x], + r = cudak_(arr)[threadIdx.x + offset]; + if (r > l) + cudak_(arr)[threadIdx.x] = r; + } + __syncthreads(); + } + if (threadIdx.x == 0) + output[blockIdx.x + ostride * blockIdx.y] = cudak_(arr)[0]; +} + +__global__ void cudak_(block_reduce_rowmax_idx)(const MATRIX_ELEM *input, + const MATRIX_ELEM *idx_input, + MATRIX_ELEM *output, + MATRIX_ELEM *idx_output, + const int istride, const int ostride, + const int n) { + extern __shared__ MATRIX_ELEM cudak_(arr)[]; + MATRIX_ELEM *arr_val = cudak_(arr); + MATRIX_ELEM *arr_idx = arr_val + blockDim.x; + int j = blockIdx.x * blockDim.x + threadIdx.x; + arr_val[threadIdx.x] = j < n ? input[j + istride * blockIdx.y] : -FLT_MAX; + arr_idx[threadIdx.x] = j < n ? idx_input[j + istride * blockIdx.y] : 0; + __syncthreads(); + for (int offset = blockDim.x >> 1; offset; offset >>= 1) + { + if (threadIdx.x < offset) + { + MATRIX_ELEM l = arr_val[threadIdx.x], + r = arr_val[threadIdx.x + offset]; + if (r > l) + { + arr_val[threadIdx.x] = r; + arr_idx[threadIdx.x] = arr_idx[threadIdx.x + offset]; + } + } + __syncthreads(); + } + if (threadIdx.x == 0) + { + output[blockIdx.x + ostride * blockIdx.y] = arr_val[0]; + idx_output[blockIdx.x + ostride * blockIdx.y] = arr_idx[0]; + } +} + +__global__ void cudak_(add_row)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, int stride, double beta) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + b[j + i * stride] += beta * a[j]; +} + +__global__ void cudak_(fill)(MATRIX_ELEM *a, + int nrow, int ncol, int stride, double val) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + a[j + i * stride] = val; +} + +__global__ void cudak_(expand_frm)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, + int enrow, int encol, + int stride, int estride, + int context) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + int ridx; + if (i >= enrow || j >= encol) return; + ridx = i + j / ncol - context; + if (ridx < 0) ridx = 0; + else if (ridx >= nrow) ridx = nrow - 1; + b[j + i * estride] = a[j % ncol + ridx * stride]; +} + +__global__ void cudak_(rearrange_frm)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, + int stride, int step, int orig_dim) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + b[j + i * stride] = a[j / step + (j % step) * orig_dim + i * stride]; +} + +__global__ void cudak_(scale_rows_by_col)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, + int astride, int bstride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + b[j + i * bstride] *= a[i * astride]; +} + +__global__ void cudak_(scale_rows_by_row)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, + int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + b[j + i * stride] *= a[j]; +} + +__global__ void cudak_(decompress)(const MATRIX_ELEM *a, MATRIX_ELEM *b, + int nrow, int ncol, + int stride_a, int stride_b) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + b[lrintf(a[j + i * stride_a]) + i * stride_b] = 1.0; +} + +__global__ void cudak_(gen_col_idx)(MATRIX_ELEM *b, + int nrow, int ncol, int stride) { + int j = blockIdx.x * blockDim.x + threadIdx.x; + int i = blockIdx.y * blockDim.y + threadIdx.y; + if (i >= nrow || j >= ncol) return; + b[j + i * stride] = j; +} + +extern "C" { +#include "../cukernel.h" + void cudak_(cuda_log_elem)(const Matrix *a, Matrix *b) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(log_elem)<<>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_mul_elem)(const Matrix *a, const Matrix *b, + Matrix *c) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(mul_elem)<<>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + MATRIX_ELEM_PTR(c), + b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_sigmoid)(const Matrix *a, Matrix *b) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(sigmoid)<<>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), b->nrow, b->ncol, + b->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_sigmoid_grad)(const Matrix *output, + const Matrix *err, Matrix *nerr) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(nerr->ncol, threadsPerBlock.x), + CEIL_DIV(nerr->nrow, threadsPerBlock.y)); + cudak_(sigmoid_grad)<<>> \ + (MATRIX_ELEM_PTR(output), MATRIX_ELEM_PTR(err), + MATRIX_ELEM_PTR(nerr), + nerr->nrow, nerr->ncol, + nerr->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_rowsum)(const Matrix *a, Matrix *b) { + dim3 block(CUDA_THREADS_NN, 1); + int ncol = a->ncol; + int blocks_per_row = CEIL_DIV(ncol, block.x); + dim3 grid(blocks_per_row, a->nrow); + MATRIX_ELEM *res; + size_t stride; + cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); + cudak_(block_reduce_rowsum)<<>> \ + (MATRIX_ELEM_PTR(a), res, + a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), + ncol); + ncol = blocks_per_row; + assert((unsigned long)ncol <= block.x); + grid.x = 1; + cudaStreamSynchronize(0); + cudak_(block_reduce_rowsum)<<>> \ + (res, MATRIX_ELEM_PTR(b), + stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), + ncol); + cudaStreamSynchronize(0); + cudaFree(res); + } + + void cudak_(cuda_colsame)(const Matrix *a, const Matrix *ref, Matrix *b) { + dim3 block(1, CUDA_THREADS_NN); + int nrow = a->nrow; + int blocks_per_col = CEIL_DIV(nrow, block.y); + dim3 grid(a->ncol, blocks_per_col); + MATRIX_ELEM *res; + size_t stride; + cudaMallocPitch(&res, &stride, a->ncol * sizeof(MATRIX_ELEM), blocks_per_col); + cudak_(block_reduce_colsame)<<>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(ref), res, + a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), + nrow); + nrow = blocks_per_col; + assert((unsigned long)nrow <= block.y); + grid.y = 1; + cudaStreamSynchronize(0); + cudak_(block_reduce_colsum)<<>> \ + (res, MATRIX_ELEM_PTR(b), + stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), + nrow); + cudaStreamSynchronize(0); + cudaFree(res); + } + + void cudak_(cuda_colsum)(const Matrix *a, Matrix *b) { + dim3 block(1, CUDA_THREADS_NN); + int nrow = a->nrow; + int blocks_per_col = CEIL_DIV(nrow, block.y); + dim3 grid(a->ncol, blocks_per_col); + MATRIX_ELEM *res; + size_t stride; + cudaMallocPitch(&res, &stride, a->ncol * sizeof(MATRIX_ELEM), blocks_per_col); + cudak_(block_reduce_colsum)<<>> \ + (MATRIX_ELEM_PTR(a), res, + a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), + nrow); + nrow = blocks_per_col; + assert((unsigned long)nrow <= block.y); + grid.y = 1; + cudaStreamSynchronize(0); + cudak_(block_reduce_colsum)<<>> \ + (res, MATRIX_ELEM_PTR(b), + stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), + nrow); + cudaStreamSynchronize(0); + cudaFree(res); + } + + void cudak_(cuda_softmax_final)(const Matrix *a, const Matrix *max, + const Matrix *deno, Matrix *b) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(softmax_final)<<>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + MATRIX_ELEM_PTR(max), MATRIX_ELEM_PTR(deno), + b->nrow, b->ncol, + b->stride / sizeof(MATRIX_ELEM), + max->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_softmax_denominator)(const Matrix *a, const Matrix *max, Matrix *b) { + dim3 block(CUDA_THREADS_NN, 1); + int ncol = a->ncol; + int blocks_per_row = CEIL_DIV(ncol, block.x); + dim3 grid(blocks_per_row, a->nrow); + MATRIX_ELEM *res; + size_t stride; + assert(max->ncol == 1); + cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); + cudak_(block_reduce_softmax_rowsum) \ + <<>> \ + (MATRIX_ELEM_PTR(a), res, MATRIX_ELEM_PTR(max), + a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), + max->stride / sizeof(MATRIX_ELEM), + ncol); + ncol = blocks_per_row; + assert((unsigned long)ncol <= block.x); + grid.x = 1; + cudaStreamSynchronize(0); + cudak_(block_reduce_rowsum) \ + <<>> \ + (res, MATRIX_ELEM_PTR(b), + stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), + ncol); + cudaStreamSynchronize(0); + cudaFree(res); + } + + void cudak_(cuda_rowmax)(const Matrix *a, Matrix *b) { + dim3 block(CUDA_THREADS_NN, 1); + int ncol = a->ncol; + int blocks_per_row = CEIL_DIV(ncol, block.x); + dim3 grid(blocks_per_row, a->nrow); + MATRIX_ELEM *res; + size_t stride; + cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); + cudak_(block_reduce_rowmax)<<>> \ + (MATRIX_ELEM_PTR(a), res, + a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), + ncol); + ncol = blocks_per_row; + assert((unsigned long)ncol <= block.x); + grid.x = 1; + cudaStreamSynchronize(0); + cudak_(block_reduce_rowmax)<<>> \ + (res, MATRIX_ELEM_PTR(b), + stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), + ncol); + cudaStreamSynchronize(0); + cudaFree(res); + } + + void cudak_(cuda_rowmax_idx)(const Matrix *a, Matrix *b, Matrix *b_idx) { + dim3 block(CUDA_THREADS_NN, 1); + int ncol = a->ncol; + int blocks_per_row = CEIL_DIV(ncol, block.x); + dim3 grid(blocks_per_row, a->nrow); + MATRIX_ELEM *a_idx, *res, *res_idx; + size_t stride; + cudaMallocPitch(&a_idx, &stride, a->stride, a->nrow); + cudak_(gen_col_idx)<<>>(a_idx, a->nrow, ncol, stride / sizeof(MATRIX_ELEM)); + cudaMallocPitch(&res, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); + cudaMallocPitch(&res_idx, &stride, blocks_per_row * sizeof(MATRIX_ELEM), a->nrow); + cudaStreamSynchronize(0); + cudak_(block_reduce_rowmax_idx)<<>> \ + (MATRIX_ELEM_PTR(a), a_idx, res, res_idx, + a->stride / sizeof(MATRIX_ELEM), stride / sizeof(MATRIX_ELEM), + ncol); + ncol = blocks_per_row; + assert((unsigned long)ncol <= block.x); + grid.x = 1; + cudaStreamSynchronize(0); + cudak_(block_reduce_rowmax_idx)<<>> \ + (res, res_idx, MATRIX_ELEM_PTR(b), MATRIX_ELEM_PTR(b_idx), + stride / sizeof(MATRIX_ELEM), b->stride / sizeof(MATRIX_ELEM), + ncol); + cudaStreamSynchronize(0); + cudaFree(a_idx); + cudaFree(res); + cudaFree(res_idx); + } + + /* in-place calc */ + void cudak_(cuda_add_row)(const Matrix *a, Matrix *b, double beta) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(add_row)<<>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), b->nrow, b->ncol, + b->stride / sizeof(MATRIX_ELEM), beta); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_fill)(Matrix *a, double val) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(a->ncol, threadsPerBlock.x), + CEIL_DIV(a->nrow, threadsPerBlock.y)); + cudak_(fill)<<>> \ + (MATRIX_ELEM_PTR(a), a->nrow, a->ncol, + a->stride / sizeof(MATRIX_ELEM), val); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_expand_frm)(const Matrix *a, Matrix *b, int context) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(expand_frm)<<>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + a->nrow, a->ncol, + b->nrow, b->ncol, + a->stride / sizeof(MATRIX_ELEM), + b->stride / sizeof(MATRIX_ELEM), + context); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_rearrange_frm)(const Matrix *a, Matrix *b, int step) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(rearrange_frm)<<>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM), + step, b->ncol / step); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_scale_rows_by_col)(const Matrix *a, Matrix *b) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(scale_rows_by_col)<<>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + b->nrow, b->ncol, + a->stride / sizeof(MATRIX_ELEM), + b->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_scale_rows_by_row)(const Matrix *a, Matrix *b) { + dim3 threadsPerBlock(CUDA_THREADS_N, CUDA_THREADS_N); + dim3 numBlocks(CEIL_DIV(b->ncol, threadsPerBlock.x), + CEIL_DIV(b->nrow, threadsPerBlock.y)); + cudak_(scale_rows_by_row)<<>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + b->nrow, b->ncol, b->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } + + void cudak_(cuda_decompress)(const Matrix *a, Matrix *b) { + dim3 threadsPerBlock(1, CUDA_THREADS_NN); + dim3 numBlocks(1, CEIL_DIV(a->nrow, threadsPerBlock.y)); + cudak_(decompress)<<>> \ + (MATRIX_ELEM_PTR(a), MATRIX_ELEM_PTR(b), + a->nrow, a->ncol, + a->stride / sizeof(MATRIX_ELEM), + b->stride / sizeof(MATRIX_ELEM)); + cudaStreamSynchronize(0); + } +} +#endif -- cgit v1.2.3