From b818c2562d07a69083377cbc34f2add108e9fa66 Mon Sep 17 00:00:00 2001 From: Determinant Date: Wed, 10 Jun 2015 20:42:10 +0800 Subject: add CombinerLayer to support branches in NN; add MSELayer --- layer/combiner.lua | 55 ++++++++++++++++++++++++++++++++++++++++++++++++++++ layer/init.lua | 2 ++ layer/mse.lua | 52 +++++++++++++++++++++++++++++++++++++++++++++++++ layer/softmax_ce.lua | 12 ++++++++++-- layer/window.lua | 2 +- 5 files changed, 120 insertions(+), 3 deletions(-) create mode 100644 layer/combiner.lua create mode 100644 layer/mse.lua (limited to 'layer') diff --git a/layer/combiner.lua b/layer/combiner.lua new file mode 100644 index 0000000..2eac83c --- /dev/null +++ b/layer/combiner.lua @@ -0,0 +1,55 @@ +local CombinerLayer = nerv.class('nerv.CombinerLayer', 'nerv.Layer') + +function CombinerLayer:__init(id, global_conf, layer_conf) + self.id = id + self.lambda = layer_conf.lambda + self.dim_in = layer_conf.dim_in + self.dim_out = layer_conf.dim_out + self.gconf = global_conf + self:check_dim_len(#self.lambda, -1) +end + +function CombinerLayer:init() + local dim = self.dim_in[1] + for i = 2, #self.dim_in do + if self.dim_in[i] ~= dim then + nerv.error("mismatching dimensions of inputs") + end + end + for i = 1, #self.dim_out do + if self.dim_out[i] ~= dim then + nerv.error("mismatching dimensions of inputs/outputs") + end + end +end + +function CombinerLayer:update(bp_err, input, output) +end + +function CombinerLayer:propagate(input, output) + output[1]:fill(0) + for i = 1, #self.dim_in do + output[1]:add(output[1], input[i], 1.0, self.lambda[i]) + end + for i = 2, #self.dim_out do + output[i]:copy_fromd(output[1]) + end +end + +function CombinerLayer:back_propagate(next_bp_err, bp_err, input, output) + local sum = bp_err[1]:create() + sum:fill(0) + for i = 1, #self.dim_out do + sum:add(sum, bp_err[i], 1.0, 1.0) + end + for i = 1, #self.dim_in do + local scale = nerv.CuMatrixFloat(sum:nrow(), 1) + scale:fill(self.lambda[i]) + next_bp_err[i]:copy_fromd(sum) + next_bp_err[i]:scale_rows_by_col(scale) + end +end + +function CombinerLayer:get_params() + return {self.lambda} +end diff --git a/layer/init.lua b/layer/init.lua index 844f46b..169427d 100644 --- a/layer/init.lua +++ b/layer/init.lua @@ -71,3 +71,5 @@ require 'layer.sigmoid' require 'layer.softmax_ce' require 'layer.bias' require 'layer.window' +require 'layer.mse' +require 'layer.combiner' diff --git a/layer/mse.lua b/layer/mse.lua new file mode 100644 index 0000000..da5b24d --- /dev/null +++ b/layer/mse.lua @@ -0,0 +1,52 @@ +local MSELayer = nerv.class("nerv.MSELayer", "nerv.Layer") + +function MSELayer:__init(id, global_conf, layer_conf) + self.id = id + self.dim_in = layer_conf.dim_in + self.dim_out = layer_conf.dim_out + self.gconf = global_conf + self:check_dim_len(2, -1) +end + +function MSELayer:init() + if self.dim_in[1] ~= self.dim_in[2] then + nerv.error("mismatching dimensions of previous network output and labels") + end + self.total_mse = 0.0 + self.total_frames = 0 +end + +function MSELayer:update(bp_err, input, output) + -- no params, therefore do nothing +end + +function MSELayer:propagate(input, output) + local mse = input[1]:create() + mse:add(input[1], input[2], 1.0, -1.0) + self.diff = mse:create() + self.diff:copy_fromd(mse) + mse:mul_elem(mse, mse) + mse = mse:rowsum(mse) + local scale = nerv.CuMatrixFloat(mse:nrow(), 1) + scale:fill(1 / input[1]:ncol()) + mse:scale_rows_by_col(scale) + if output[1] ~= nil then + output[1]:copy_fromd(mse) + end + self.total_mse = self.total_mse + mse:colsum()[0] + self.total_frames = self.total_frames + mse:nrow() +end + +-- NOTE: must call propagate before back_propagate +function MSELayer:back_propagate(next_bp_err, bp_err, input, output) + local nbe = next_bp_err[1] + nbe:copy_fromd(self.diff) + self.diff = nil + if bp_err[1] ~= nil then + nbe:scale_rows_by_col(bp_err[1]) + end +end + +function MSELayer:get_params() + return {} +end diff --git a/layer/softmax_ce.lua b/layer/softmax_ce.lua index 2e1f5fb..7888540 100644 --- a/layer/softmax_ce.lua +++ b/layer/softmax_ce.lua @@ -36,8 +36,12 @@ function SoftmaxCELayer:propagate(input, output) label = label:decompress(input[1]:ncol()) end ce:mul_elem(ce, label) + ce = ce:rowsum() + if output[1] ~= nil then + output[1]:copy_fromd(ce) + end -- add total ce - self.total_ce = self.total_ce - ce:rowsum():colsum()[0] + self.total_ce = self.total_ce - ce:colsum()[0] self.total_frames = self.total_frames + soutput:nrow() -- TODO: add colsame for uncompressed label if self.compressed then @@ -51,7 +55,11 @@ function SoftmaxCELayer:back_propagate(next_bp_err, bp_err, input, output) if self.compressed then label = label:decompress(input[1]:ncol()) end - next_bp_err[1]:add(self.soutput, label, 1.0, -1.0) + local nbe = next_bp_err[1] + nbe:add(self.soutput, label, 1.0, -1.0) + if bp_err[1] ~= nil then + nbe:scale_rows_by_col(bp_err[1]) + end end function SoftmaxCELayer:get_params() diff --git a/layer/window.lua b/layer/window.lua index b381c9b..3a093f4 100644 --- a/layer/window.lua +++ b/layer/window.lua @@ -20,7 +20,7 @@ end function WindowLayer:propagate(input, output) output[1]:copy_fromd(input[1]) - output[1]:scale_row(self.window.trans) + output[1]:scale_rows_by_row(self.window.trans) end function WindowLayer:get_params() -- cgit v1.2.3-70-g09d2