From e2a9af061db485d4388902d738c9d8be3f94ab34 Mon Sep 17 00:00:00 2001 From: Qi Liu Date: Fri, 11 Mar 2016 20:11:00 +0800 Subject: add recipe and fix bugs --- lua/config.lua | 67 --------- lua/main.lua | 45 ------ lua/network.lua | 106 -------------- lua/reader.lua | 113 --------------- lua/select_linear.lua | 62 --------- lua/timer.lua | 33 ----- lua/tnn.lua | 136 ------------------ nerv/Makefile | 2 +- nerv/examples/network_debug/config.lua | 62 +++++++++ nerv/examples/network_debug/main.lua | 45 ++++++ nerv/examples/network_debug/network.lua | 110 +++++++++++++++ nerv/examples/network_debug/reader.lua | 113 +++++++++++++++ nerv/examples/network_debug/select_linear.lua | 59 ++++++++ nerv/examples/network_debug/timer.lua | 33 +++++ nerv/examples/network_debug/tnn.lua | 136 ++++++++++++++++++ nerv/io/init.lua | 3 +- nerv/io/seq_buffer.lua | 0 nerv/layer/dropout.lua | 11 +- nerv/layer/graph.lua | 2 +- nerv/layer/lstm.lua | 191 +++++++++----------------- nerv/layer/rnn.lua | 20 +-- nerv/matrix/init.lua | 18 ++- 22 files changed, 662 insertions(+), 705 deletions(-) delete mode 100644 lua/config.lua delete mode 100644 lua/main.lua delete mode 100644 lua/network.lua delete mode 100644 lua/reader.lua delete mode 100644 lua/select_linear.lua delete mode 100644 lua/timer.lua delete mode 100644 lua/tnn.lua create mode 100644 nerv/examples/network_debug/config.lua create mode 100644 nerv/examples/network_debug/main.lua create mode 100644 nerv/examples/network_debug/network.lua create mode 100644 nerv/examples/network_debug/reader.lua create mode 100644 nerv/examples/network_debug/select_linear.lua create mode 100644 nerv/examples/network_debug/timer.lua create mode 100644 nerv/examples/network_debug/tnn.lua create mode 100644 nerv/io/seq_buffer.lua diff --git a/lua/config.lua b/lua/config.lua deleted file mode 100644 index ff98ae0..0000000 --- a/lua/config.lua +++ /dev/null @@ -1,67 +0,0 @@ -function get_global_conf() - local global_conf = { - lrate = 0.15, - wcost = 1e-5, - momentum = 0, - clip = 5, - cumat_type = nerv.CuMatrixFloat, - mmat_type = nerv.MMatrixFloat, - vocab_size = 10000, - nn_act_default = 0, - hidden_size = 300, - layer_num = 1, - chunk_size = 15, - batch_size = 20, - max_iter = 35, - param_random = function() return (math.random() / 5 - 0.1) end, - dropout_rate = 0.5, - timer = nerv.Timer(), - pr = nerv.ParamRepo(), - } - return global_conf -end - -function get_layers(global_conf) - local pr = global_conf.pr - local layers = { - ['nerv.LSTMLayer'] = {}, - ['nerv.DropoutLayer'] = {}, - ['nerv.SelectLinearLayer'] = { - ['select'] = {dim_in = {1}, dim_out = {global_conf.hidden_size}, vocab = global_conf.vocab_size, pr = pr}, - }, - ['nerv.CombinerLayer'] = {}, - ['nerv.AffineLayer'] = { - output = {dim_in = {global_conf.hidden_size}, dim_out = {global_conf.vocab_size}, pr = pr} - }, - ['nerv.SoftmaxCELayer'] = { - softmax = {dim_in = {global_conf.vocab_size, global_conf.vocab_size}, dim_out = {1}, compressed = true}, - }, - } - for i = 1, global_conf.layer_num do - layers['nerv.LSTMLayer']['lstm' .. i] = {dim_in = {global_conf.hidden_size, global_conf.hidden_size, global_conf.hidden_size}, dim_out = {global_conf.hidden_size, global_conf.hidden_size}, pr = pr} - layers['nerv.DropoutLayer']['dropout' .. i] = {dim_in = {global_conf.hidden_size}, dim_out = {global_conf.hidden_size}} - layers['nerv.CombinerLayer']['dup' .. i] = {dim_in = {global_conf.hidden_size}, dim_out = {global_conf.hidden_size, global_conf.hidden_size}, lambda = {1}} - end - return layers -end - -function get_connections(global_conf) - local connections = { - {'[1]', 'select[1]', 0}, - {'select[1]', 'lstm1[1]', 0}, - {'dropout' .. global_conf.layer_num .. '[1]', 'output[1]', 0}, - {'output[1]', 'softmax[1]', 0}, - {'[2]', 'softmax[2]', 0}, - {'softmax[1]', '[1]', 0}, - } - for i = 1, global_conf.layer_num do - table.insert(connections, {'lstm' .. i .. '[1]', 'dup' .. i .. '[1]', 0}) - table.insert(connections, {'lstm' .. i .. '[2]', 'lstm' .. i .. '[3]', 1}) - table.insert(connections, {'dup' .. i .. '[1]', 'lstm' .. i .. '[2]', 1}) - table.insert(connections, {'dup' .. i .. '[2]', 'dropout' .. i .. '[1]', 0}) - if i > 1 then - table.insert(connections, {'dropout' .. (i - 1) .. '[1]', 'lstm' .. i .. '[1]', 0}) - end - end - return connections -end diff --git a/lua/main.lua b/lua/main.lua deleted file mode 100644 index 39818aa..0000000 --- a/lua/main.lua +++ /dev/null @@ -1,45 +0,0 @@ -nerv.include('reader.lua') -nerv.include('timer.lua') -nerv.include('config.lua') -nerv.include(arg[1]) - -local global_conf = get_global_conf() -local timer = global_conf.timer - -timer:tic('IO') - -local data_path = 'nerv/nerv/examples/lmptb/PTBdata/' -local train_reader = nerv.Reader(data_path .. 'vocab', data_path .. 'ptb.train.txt.adds') -local val_reader = nerv.Reader(data_path .. 'vocab', data_path .. 'ptb.valid.txt.adds') - -local train_data = train_reader:get_all_batch(global_conf) -local val_data = val_reader:get_all_batch(global_conf) - -local layers = get_layers(global_conf) -local connections = get_connections(global_conf) - -local NN = nerv.NN(global_conf, train_data, val_data, layers, connections) - -timer:toc('IO') -timer:check('IO') -io.flush() - -timer:tic('global') -local best_cv = 1e10 -for i = 1, global_conf.max_iter do - timer:tic('Epoch' .. i) - local train_ppl, val_ppl = NN:epoch() - if val_ppl < best_cv then - best_cv = val_ppl - else - global_conf.lrate = global_conf.lrate / 2.0 - end - nerv.printf('Epoch %d: %f %f %f\n', i, global_conf.lrate, train_ppl, val_ppl) - timer:toc('Epoch' .. i) - timer:check('Epoch' .. i) - io.flush() -end -timer:toc('global') -timer:check('global') -timer:check('network') -timer:check('gc') diff --git a/lua/network.lua b/lua/network.lua deleted file mode 100644 index d106ba1..0000000 --- a/lua/network.lua +++ /dev/null @@ -1,106 +0,0 @@ -nerv.include('select_linear.lua') - -local nn = nerv.class('nerv.NN') - -function nn:__init(global_conf, train_data, val_data, layers, connections) - self.gconf = global_conf - self.network = self:get_network(layers, connections) - self.train_data = self:get_data(train_data) - self.val_data = self:get_data(val_data) -end - -function nn:get_network(layers, connections) - local layer_repo = nerv.LayerRepo(layers, self.gconf.pr, self.gconf) - local graph = nerv.GraphLayer('graph', self.gconf, - {dim_in = {1, self.gconf.vocab_size}, dim_out = {1}, - layer_repo = layer_repo, connections = connections}) - local network = nerv.Network('network', self.gconf, - {network = graph, clip = self.gconf.clip}) - network:init(self.gconf.batch_size, self.gconf.chunk_size) - return network -end - -function nn:get_data(data) - local err_output = {} - local softmax_output = {} - local output = {} - for i = 1, self.gconf.chunk_size do - err_output[i] = self.gconf.cumat_type(self.gconf.batch_size, 1) - softmax_output[i] = self.gconf.cumat_type(self.gconf.batch_size, self.gconf.vocab_size) - output[i] = self.gconf.cumat_type(self.gconf.batch_size, 1) - end - local ret = {} - for i = 1, #data do - ret[i] = {} - ret[i].input = {} - ret[i].output = {} - ret[i].err_input = {} - ret[i].err_output = {} - for t = 1, self.gconf.chunk_size do - ret[i].input[t] = {} - ret[i].output[t] = {} - ret[i].err_input[t] = {} - ret[i].err_output[t] = {} - ret[i].input[t][1] = data[i].input[t] - ret[i].input[t][2] = data[i].output[t] - ret[i].output[t][1] = output[t] - local err_input = self.gconf.mmat_type(self.gconf.batch_size, 1) - for j = 1, self.gconf.batch_size do - if t <= data[i].seq_len[j] then - err_input[j - 1][0] = 1 - else - err_input[j - 1][0] = 0 - end - end - ret[i].err_input[t][1] = self.gconf.cumat_type.new_from_host(err_input) - ret[i].err_output[t][1] = err_output[t] - ret[i].err_output[t][2] = softmax_output[t] - end - ret[i].seq_length = data[i].seq_len - ret[i].new_seq = {} - for j = 1, self.gconf.batch_size do - if data[i].seq_start[j] then - table.insert(ret[i].new_seq, j) - end - end - end - return ret -end - -function nn:process(data, do_train) - local timer = self.gconf.timer - local total_err = 0 - local total_frame = 0 - for id = 1, #data do - data[id].do_train = do_train - timer:tic('network') - self.network:mini_batch_init(data[id]) - self.network:propagate() - timer:toc('network') - for t = 1, self.gconf.chunk_size do - local tmp = data[id].output[t][1]:new_to_host() - for i = 1, self.gconf.batch_size do - if t <= data[id].seq_length[i] then - total_err = total_err + math.log10(math.exp(tmp[i - 1][0])) - total_frame = total_frame + 1 - end - end - end - if do_train then - timer:tic('network') - self.network:back_propagate() - self.network:update() - timer:toc('network') - end - timer:tic('gc') - collectgarbage('collect') - timer:toc('gc') - end - return math.pow(10, - total_err / total_frame) -end - -function nn:epoch() - local train_error = self:process(self.train_data, true) - local val_error = self:process(self.val_data, false) - return train_error, val_error -end diff --git a/lua/reader.lua b/lua/reader.lua deleted file mode 100644 index d2624d3..0000000 --- a/lua/reader.lua +++ /dev/null @@ -1,113 +0,0 @@ -local Reader = nerv.class('nerv.Reader') - -function Reader:__init(vocab_file, input_file) - self:get_vocab(vocab_file) - self:get_seq(input_file) -end - -function Reader:get_vocab(vocab_file) - local f = io.open(vocab_file, 'r') - local id = 0 - self.vocab = {} - while true do - local word = f:read() - if word == nil then - break - end - self.vocab[word] = id - id = id + 1 - end - self.size = id -end - -function Reader:split(s, t) - local ret = {} - for x in (s .. t):gmatch('(.-)' .. t) do - table.insert(ret, x) - end - return ret -end - -function Reader:get_seq(input_file) - local f = io.open(input_file, 'r') - self.seq = {} - while true do - local seq = f:read() - if seq == nil then - break - end - seq = self:split(seq, ' ') - local tmp = {} - for i = 1, #seq do - if seq[i] ~= '' then - table.insert(tmp, self.vocab[seq[i]]) - end - end - table.insert(self.seq, tmp) - end -end - -function Reader:get_in_out(id, pos) - return self.seq[id][pos], self.seq[id][pos + 1], pos + 1 == #self.seq[id] -end - -function Reader:get_all_batch(global_conf) - local data = {} - local pos = {} - local offset = 1 - for i = 1, global_conf.batch_size do - pos[i] = nil - end - while true do - --for i = 1, 100 do - local input = {} - local output = {} - for i = 1, global_conf.chunk_size do - input[i] = global_conf.mmat_type(global_conf.batch_size, 1) - input[i]:fill(global_conf.nn_act_default) - output[i] = global_conf.mmat_type(global_conf.batch_size, 1) - output[i]:fill(global_conf.nn_act_default) - end - local seq_start = {} - local seq_end = {} - local seq_len = {} - for i = 1, global_conf.batch_size do - seq_start[i] = false - seq_end[i] = false - seq_len[i] = 0 - end - local has_new = false - for i = 1, global_conf.batch_size do - if pos[i] == nil then - if offset < #self.seq then - seq_start[i] = true - pos[i] = {offset, 1} - offset = offset + 1 - end - end - if pos[i] ~= nil then - has_new = true - for j = 1, global_conf.chunk_size do - local final - input[j][i-1][0], output[j][i-1][0], final = self:get_in_out(pos[i][1], pos[i][2]) - seq_len[i] = j - if final then - seq_end[i] = true - pos[i] = nil - break - end - pos[i][2] = pos[i][2] + 1 - end - end - end - if not has_new then - break - end - for i = 1, global_conf.chunk_size do - input[i] = global_conf.cumat_type.new_from_host(input[i]) - output[i] = global_conf.cumat_type.new_from_host(output[i]) - end - table.insert(data, {input = input, output = output, seq_start = seq_start, seq_end = seq_end, seq_len = seq_len}) - end - return data -end diff --git a/lua/select_linear.lua b/lua/select_linear.lua deleted file mode 100644 index a7e20cc..0000000 --- a/lua/select_linear.lua +++ /dev/null @@ -1,62 +0,0 @@ -local SL = nerv.class('nerv.SelectLinearLayer', 'nerv.Layer') - ---id: string ---global_conf: table ---layer_conf: table ---Get Parameters -function SL:__init(id, global_conf, layer_conf) - self.id = id - self.dim_in = layer_conf.dim_in - self.dim_out = layer_conf.dim_out - self.gconf = global_conf - - self.vocab = layer_conf.vocab - self.ltp = self:find_param("ltp", layer_conf, global_conf, nerv.LinearTransParam, {self.vocab, self.dim_out[1]}) --layer_conf.ltp - - self:check_dim_len(1, 1) -end - ---Check parameter -function SL:init(batch_size) - if (self.dim_in[1] ~= 1) then --one word id - nerv.error("mismatching dimensions of ltp and input") - end - if (self.dim_out[1] ~= self.ltp.trans:ncol()) then - nerv.error("mismatching dimensions of bp and output") - end - - self.batch_size = bath_size - self.ltp:train_init() -end - -function SL:update(bp_err, input, output) - --use this to produce reproducable result, don't forget to set the dropout to zero! - --for i = 1, input[1]:nrow(), 1 do - -- local word_vec = self.ltp.trans[input[1][i - 1][0]] - -- word_vec:add(word_vec, bp_err[1][i - 1], 1, - self.gconf.lrate / self.gconf.batch_size) - --end - - --I tried the update_select_rows kernel which uses atomicAdd, but it generates unreproducable result - self.ltp.trans:update_select_rows_by_colidx(bp_err[1], input[1], - self.gconf.lrate / self.gconf.batch_size, 0) - self.ltp.trans:add(self.ltp.trans, self.ltp.trans, 1.0, - self.gconf.lrate * self.gconf.wcost) -end - -function SL:propagate(input, output) - --for i = 0, input[1]:ncol() - 1, 1 do - -- if (input[1][0][i] > 0) then - -- output[1][i]:copy_fromd(self.ltp.trans[input[1][0][i]]) - -- else - -- output[1][i]:fill(0) - -- end - --end - output[1]:copy_rows_fromd_by_colidx(self.ltp.trans, input[1]) -end - -function SL:back_propagate(bp_err, next_bp_err, input, output) - --input is compressed, do nothing -end - -function SL:get_params() - local paramRepo = nerv.ParamRepo({self.ltp}) - return paramRepo -end diff --git a/lua/timer.lua b/lua/timer.lua deleted file mode 100644 index 2c54ca8..0000000 --- a/lua/timer.lua +++ /dev/null @@ -1,33 +0,0 @@ -local Timer = nerv.class("nerv.Timer") - -function Timer:__init() - self.last = {} - self.rec = {} -end - -function Timer:tic(item) - self.last[item] = os.clock() -end - -function Timer:toc(item) - if (self.last[item] == nil) then - nerv.error("item not there") - end - if (self.rec[item] == nil) then - self.rec[item] = 0 - end - self.rec[item] = self.rec[item] + os.clock() - self.last[item] -end - -function Timer:check(item) - if self.rec[item]==nil then - nerv.error('item not there') - end - nerv.printf('"%s" lasts for %f secs.\n',item,self.rec[item]) -end - -function Timer:flush() - for key, value in pairs(self.rec) do - self.rec[key] = nil - end -end diff --git a/lua/tnn.lua b/lua/tnn.lua deleted file mode 100644 index bf9f118..0000000 --- a/lua/tnn.lua +++ /dev/null @@ -1,136 +0,0 @@ -nerv.include('select_linear.lua') - -local reader = nerv.class('nerv.TNNReader') - -function reader:__init(global_conf, data) - self.gconf = global_conf - self.offset = 0 - self.data = data -end - -function reader:get_batch(feeds) - self.offset = self.offset + 1 - if self.offset > #self.data then - return false - end - for i = 1, self.gconf.chunk_size do - feeds.inputs_m[i][1]:copy_from(self.data[self.offset].input[i]) - feeds.inputs_m[i][2]:copy_from(self.data[self.offset].output[i]:decompress(self.gconf.vocab_size)) - end - feeds.flags_now = self.data[self.offset].flags - feeds.flagsPack_now = self.data[self.offset].flagsPack - return true -end - -function reader:has_data(t, i) - return t <= self.data[self.offset].seq_len[i] -end - -function reader:get_err_input() - return self.data[self.offset].err_input -end - -local nn = nerv.class('nerv.NN') - -function nn:__init(global_conf, train_data, val_data, layers, connections) - self.gconf = global_conf - self.tnn = self:get_tnn(layers, connections) - self.train_data = self:get_data(train_data) - self.val_data = self:get_data(val_data) -end - -function nn:get_tnn(layers, connections) - self.gconf.dropout_rate = 0 - local layer_repo = nerv.LayerRepo(layers, self.gconf.pr, self.gconf) - local tnn = nerv.TNN('TNN', self.gconf, {dim_in = {1, self.gconf.vocab_size}, - dim_out = {1}, sub_layers = layer_repo, connections = connections, - clip = self.gconf.clip}) - tnn:init(self.gconf.batch_size, self.gconf.chunk_size) - return tnn -end - -function nn:get_data(data) - local ret = {} - for i = 1, #data do - ret[i] = {} - ret[i].input = data[i].input - ret[i].output = data[i].output - ret[i].flags = {} - ret[i].err_input = {} - for t = 1, self.gconf.chunk_size do - ret[i].flags[t] = {} - local err_input = self.gconf.mmat_type(self.gconf.batch_size, 1) - for j = 1, self.gconf.batch_size do - if t <= data[i].seq_len[j] then - ret[i].flags[t][j] = nerv.TNN.FC.SEQ_NORM - err_input[j - 1][0] = 1 - else - ret[i].flags[t][j] = 0 - err_input[j - 1][0] = 0 - end - end - ret[i].err_input[t] = self.gconf.cumat_type.new_from_host(err_input) - end - for j = 1, self.gconf.batch_size do - if data[i].seq_start[j] then - ret[i].flags[1][j] = bit.bor(ret[i].flags[1][j], nerv.TNN.FC.SEQ_START) - end - if data[i].seq_end[j] then - local t = data[i].seq_len[j] - ret[i].flags[t][j] = bit.bor(ret[i].flags[t][j], nerv.TNN.FC.SEQ_END) - end - end - ret[i].flagsPack = {} - for t = 1, self.gconf.chunk_size do - ret[i].flagsPack[t] = 0 - for j = 1, self.gconf.batch_size do - ret[i].flagsPack[t] = bit.bor(ret[i].flagsPack[t], ret[i].flags[t][j]) - end - end - ret[i].seq_len = data[i].seq_len - end - return ret -end - -function nn:process(data, do_train) - local total_err = 0 - local total_frame = 0 - local reader = nerv.TNNReader(self.gconf, data) - while true do - local r, _ = self.tnn:getfeed_from_reader(reader) - if not r then - break - end - if do_train then - self.gconf.dropout_rate = self.gconf.dropout - else - self.gconf.dropout_rate = 0 - end - self.tnn:net_propagate() - for t = 1, self.gconf.chunk_size do - local tmp = self.tnn.outputs_m[t][1]:new_to_host() - for i = 1, self.gconf.batch_size do - if reader:has_data(t, i) then - total_err = total_err + math.log10(math.exp(tmp[i - 1][0])) - total_frame = total_frame + 1 - end - end - end - if do_train then - local err_input = reader:get_err_input() - for i = 1, self.gconf.chunk_size do - self.tnn.err_inputs_m[i][1]:copy_from(err_input[i]) - end - self.tnn:net_backpropagate(false) - self.tnn:net_backpropagate(true) - end - collectgarbage('collect') - end - return math.pow(10, - total_err / total_frame) -end - -function nn:epoch() - local train_error = self:process(self.train_data, true) - local val_error = self:process(self.val_data, false) - return train_error, val_error -end diff --git a/nerv/Makefile b/nerv/Makefile index 7921bd9..68465a1 100644 --- a/nerv/Makefile +++ b/nerv/Makefile @@ -44,7 +44,7 @@ LUA_LIBS := matrix/init.lua io/init.lua init.lua \ layer/elem_mul.lua layer/lstm.lua layer/lstm_gate.lua layer/dropout.lua layer/gru.lua \ layer/graph.lua layer/rnn.lua layer/duplicate.lua layer/identity.lua \ nn/init.lua nn/layer_repo.lua nn/param_repo.lua nn/network.lua \ - io/sgd_buffer.lua + io/sgd_buffer.lua io/seq_buffer.lua INCLUDE := -I $(LUA_INCDIR) -DLUA_USE_APICHECK CUDA_INCLUDE := -I $(CUDA_BASE)/include/ diff --git a/nerv/examples/network_debug/config.lua b/nerv/examples/network_debug/config.lua new file mode 100644 index 0000000..e20d5a9 --- /dev/null +++ b/nerv/examples/network_debug/config.lua @@ -0,0 +1,62 @@ +function get_global_conf() + local global_conf = { + lrate = 0.15, + wcost = 1e-5, + momentum = 0, + clip = 5, + cumat_type = nerv.CuMatrixFloat, + mmat_type = nerv.MMatrixFloat, + vocab_size = 10000, + nn_act_default = 0, + hidden_size = 300, + layer_num = 1, + chunk_size = 15, + batch_size = 20, + max_iter = 35, + param_random = function() return (math.random() / 5 - 0.1) end, + dropout_rate = 0.5, + timer = nerv.Timer(), + pr = nerv.ParamRepo(), + } + return global_conf +end + +function get_layers(global_conf) + local pr = global_conf.pr + local layers = { + ['nerv.LSTMLayer'] = {}, + ['nerv.DropoutLayer'] = {}, + ['nerv.SelectLinearLayer'] = { + ['select'] = {dim_in = {1}, dim_out = {global_conf.hidden_size}, vocab = global_conf.vocab_size, pr = pr}, + }, + ['nerv.AffineLayer'] = { + output = {dim_in = {global_conf.hidden_size}, dim_out = {global_conf.vocab_size}, pr = pr} + }, + ['nerv.SoftmaxCELayer'] = { + softmax = {dim_in = {global_conf.vocab_size, global_conf.vocab_size}, dim_out = {1}, compressed = true}, + }, + } + for i = 1, global_conf.layer_num do + layers['nerv.LSTMLayer']['lstm' .. i] = {dim_in = {global_conf.hidden_size}, dim_out = {global_conf.hidden_size}, pr = pr} + layers['nerv.DropoutLayer']['dropout' .. i] = {dim_in = {global_conf.hidden_size}, dim_out = {global_conf.hidden_size}} + end + return layers +end + +function get_connections(global_conf) + local connections = { + {'[1]', 'select[1]', 0}, + {'select[1]', 'lstm1[1]', 0}, + {'dropout' .. global_conf.layer_num .. '[1]', 'output[1]', 0}, + {'output[1]', 'softmax[1]', 0}, + {'[2]', 'softmax[2]', 0}, + {'softmax[1]', '[1]', 0}, + } + for i = 1, global_conf.layer_num do + table.insert(connections, {'lstm' .. i .. '[1]', 'dropout' .. i .. '[1]', 0}) + if i < 1 then + table.insert(connections, {'dropout' .. (i - 1) .. '[1]', 'lstm' .. i .. '[1]', 0}) + end + end + return connections +end diff --git a/nerv/examples/network_debug/main.lua b/nerv/examples/network_debug/main.lua new file mode 100644 index 0000000..790c404 --- /dev/null +++ b/nerv/examples/network_debug/main.lua @@ -0,0 +1,45 @@ +nerv.include('reader.lua') +nerv.include('timer.lua') +nerv.include('config.lua') +nerv.include(arg[1]) + +local global_conf = get_global_conf() +local timer = global_conf.timer + +timer:tic('IO') + +local data_path = 'examples/lmptb/PTBdata/' +local train_reader = nerv.Reader(data_path .. 'vocab', data_path .. 'ptb.train.txt.adds') +local val_reader = nerv.Reader(data_path .. 'vocab', data_path .. 'ptb.valid.txt.adds') + +local train_data = train_reader:get_all_batch(global_conf) +local val_data = val_reader:get_all_batch(global_conf) + +local layers = get_layers(global_conf) +local connections = get_connections(global_conf) + +local NN = nerv.NN(global_conf, train_data, val_data, layers, connections) + +timer:toc('IO') +timer:check('IO') +io.flush() + +timer:tic('global') +local best_cv = 1e10 +for i = 1, global_conf.max_iter do + timer:tic('Epoch' .. i) + local train_ppl, val_ppl = NN:epoch() + if val_ppl < best_cv then + best_cv = val_ppl + else + global_conf.lrate = global_conf.lrate / 2.0 + end + nerv.printf('Epoch %d: %f %f %f\n', i, global_conf.lrate, train_ppl, val_ppl) + timer:toc('Epoch' .. i) + timer:check('Epoch' .. i) + io.flush() +end +timer:toc('global') +timer:check('global') +timer:check('network') +timer:check('gc') diff --git a/nerv/examples/network_debug/network.lua b/nerv/examples/network_debug/network.lua new file mode 100644 index 0000000..5518e27 --- /dev/null +++ b/nerv/examples/network_debug/network.lua @@ -0,0 +1,110 @@ +nerv.include('select_linear.lua') + +local nn = nerv.class('nerv.NN') + +function nn:__init(global_conf, train_data, val_data, layers, connections) + self.gconf = global_conf + self.network = self:get_network(layers, connections) + self.train_data = self:get_data(train_data) + self.val_data = self:get_data(val_data) +end + +function nn:get_network(layers, connections) + local layer_repo = nerv.LayerRepo(layers, self.gconf.pr, self.gconf) + local graph = nerv.GraphLayer('graph', self.gconf, + {dim_in = {1, self.gconf.vocab_size}, dim_out = {1}, + layer_repo = layer_repo, connections = connections}) + local network = nerv.Network('network', self.gconf, + {network = graph, clip = self.gconf.clip}) + network:init(self.gconf.batch_size, self.gconf.chunk_size) + return network +end + +function nn:get_data(data) + local err_output = {} + local softmax_output = {} + local output = {} + for i = 1, self.gconf.chunk_size do + err_output[i] = self.gconf.cumat_type(self.gconf.batch_size, 1) + softmax_output[i] = self.gconf.cumat_type(self.gconf.batch_size, self.gconf.vocab_size) + output[i] = self.gconf.cumat_type(self.gconf.batch_size, 1) + end + local ret = {} + for i = 1, #data do + ret[i] = {} + ret[i].input = {} + ret[i].output = {} + ret[i].err_input = {} + ret[i].err_output = {} + for t = 1, self.gconf.chunk_size do + ret[i].input[t] = {} + ret[i].output[t] = {} + ret[i].err_input[t] = {} + ret[i].err_output[t] = {} + ret[i].input[t][1] = data[i].input[t] + ret[i].input[t][2] = data[i].output[t] + ret[i].output[t][1] = output[t] + local err_input = self.gconf.mmat_type(self.gconf.batch_size, 1) + for j = 1, self.gconf.batch_size do + if t <= data[i].seq_len[j] then + err_input[j - 1][0] = 1 + else + err_input[j - 1][0] = 0 + end + end + ret[i].err_input[t][1] = self.gconf.cumat_type.new_from_host(err_input) + ret[i].err_output[t][1] = err_output[t] + ret[i].err_output[t][2] = softmax_output[t] + end + ret[i].seq_length = data[i].seq_len + ret[i].new_seq = {} + for j = 1, self.gconf.batch_size do + if data[i].seq_start[j] then + table.insert(ret[i].new_seq, j) + end + end + end + return ret +end + +function nn:process(data, do_train) + local timer = self.gconf.timer + local total_err = 0 + local total_frame = 0 + self.network:epoch_init() + for id = 1, #data do + data[id].do_train = do_train + timer:tic('network') + self.network:mini_batch_init(data[id]) + self.network:propagate() + timer:toc('network') + for t = 1, self.gconf.chunk_size do + local tmp = data[id].output[t][1]:new_to_host() + for i = 1, self.gconf.batch_size do + if t <= data[id].seq_length[i] then + total_err = total_err + math.log10(math.exp(tmp[i - 1][0])) + total_frame = total_frame + 1 + end + end + end + if do_train then + timer:tic('network') + self.network:back_propagate() + self.network:update() + timer:toc('network') + end + timer:tic('gc') + collectgarbage('collect') + timer:toc('gc') + end + return math.pow(10, - total_err / total_frame) +end + +function nn:epoch() + local train_error = self:process(self.train_data, true) + local tmp = self.gconf.dropout_rate + self.gconf.dropout_rate = 0 + local val_error = self:process(self.val_data, false) + self.gconf.dropout_rate = tmp + return train_error, val_error +end diff --git a/nerv/examples/network_debug/reader.lua b/nerv/examples/network_debug/reader.lua new file mode 100644 index 0000000..d2624d3 --- /dev/null +++ b/nerv/examples/network_debug/reader.lua @@ -0,0 +1,113 @@ +local Reader = nerv.class('nerv.Reader') + +function Reader:__init(vocab_file, input_file) + self:get_vocab(vocab_file) + self:get_seq(input_file) +end + +function Reader:get_vocab(vocab_file) + local f = io.open(vocab_file, 'r') + local id = 0 + self.vocab = {} + while true do + local word = f:read() + if word == nil then + break + end + self.vocab[word] = id + id = id + 1 + end + self.size = id +end + +function Reader:split(s, t) + local ret = {} + for x in (s .. t):gmatch('(.-)' .. t) do + table.insert(ret, x) + end + return ret +end + +function Reader:get_seq(input_file) + local f = io.open(input_file, 'r') + self.seq = {} + while true do + local seq = f:read() + if seq == nil then + break + end + seq = self:split(seq, ' ') + local tmp = {} + for i = 1, #seq do + if seq[i] ~= '' then + table.insert(tmp, self.vocab[seq[i]]) + end + end + table.insert(self.seq, tmp) + end +end + +function Reader:get_in_out(id, pos) + return self.seq[id][pos], self.seq[id][pos + 1], pos + 1 == #self.seq[id] +end + +function Reader:get_all_batch(global_conf) + local data = {} + local pos = {} + local offset = 1 + for i = 1, global_conf.batch_size do + pos[i] = nil + end + while true do + --for i = 1, 100 do + local input = {} + local output = {} + for i = 1, global_conf.chunk_size do + input[i] = global_conf.mmat_type(global_conf.batch_size, 1) + input[i]:fill(global_conf.nn_act_default) + output[i] = global_conf.mmat_type(global_conf.batch_size, 1) + output[i]:fill(global_conf.nn_act_default) + end + local seq_start = {} + local seq_end = {} + local seq_len = {} + for i = 1, global_conf.batch_size do + seq_start[i] = false + seq_end[i] = false + seq_len[i] = 0 + end + local has_new = false + for i = 1, global_conf.batch_size do + if pos[i] == nil then + if offset < #self.seq then + seq_start[i] = true + pos[i] = {offset, 1} + offset = offset + 1 + end + end + if pos[i] ~= nil then + has_new = true + for j = 1, global_conf.chunk_size do + local final + input[j][i-1][0], output[j][i-1][0], final = self:get_in_out(pos[i][1], pos[i][2]) + seq_len[i] = j + if final then + seq_end[i] = true + pos[i] = nil + break + end + pos[i][2] = pos[i][2] + 1 + end + end + end + if not has_new then + break + end + for i = 1, global_conf.chunk_size do + input[i] = global_conf.cumat_type.new_from_host(input[i]) + output[i] = global_conf.cumat_type.new_from_host(output[i]) + end + table.insert(data, {input = input, output = output, seq_start = seq_start, seq_end = seq_end, seq_len = seq_len}) + end + return data +end diff --git a/nerv/examples/network_debug/select_linear.lua b/nerv/examples/network_debug/select_linear.lua new file mode 100644 index 0000000..91beedf --- /dev/null +++ b/nerv/examples/network_debug/select_linear.lua @@ -0,0 +1,59 @@ +local SL = nerv.class('nerv.SelectLinearLayer', 'nerv.Layer') + +--id: string +--global_conf: table +--layer_conf: table +--Get Parameters +function SL:__init(id, global_conf, layer_conf) + nerv.Layer.__init(self, id, global_conf, layer_conf) + + self.vocab = layer_conf.vocab + self.ltp = self:find_param("ltp", layer_conf, global_conf, nerv.LinearTransParam, {self.vocab, self.dim_out[1]}) --layer_conf.ltp + + self:check_dim_len(1, 1) +end + +--Check parameter +function SL:init(batch_size) + if (self.dim_in[1] ~= 1) then --one word id + nerv.error("mismatching dimensions of ltp and input") + end + if (self.dim_out[1] ~= self.ltp.trans:ncol()) then + nerv.error("mismatching dimensions of bp and output") + end + + self.batch_size = bath_size + self.ltp:train_init() +end + +function SL:update(bp_err, input, output) + --use this to produce reproducable result, don't forget to set the dropout to zero! + --for i = 1, input[1]:nrow(), 1 do + -- local word_vec = self.ltp.trans[input[1][i - 1][0]] + -- word_vec:add(word_vec, bp_err[1][i - 1], 1, - self.gconf.lrate / self.gconf.batch_size) + --end + + --I tried the update_select_rows kernel which uses atomicAdd, but it generates unreproducable result + self.ltp.trans:update_select_rows_by_colidx(bp_err[1], input[1], - self.gconf.lrate / self.gconf.batch_size, 0) + self.ltp.trans:add(self.ltp.trans, self.ltp.trans, 1.0, - self.gconf.lrate * self.gconf.wcost) +end + +function SL:propagate(input, output) + --for i = 0, input[1]:ncol() - 1, 1 do + -- if (input[1][0][i] > 0) then + -- output[1][i]:copy_fromd(self.ltp.trans[input[1][0][i]]) + -- else + -- output[1][i]:fill(0) + -- end + --end + output[1]:copy_rows_fromd_by_colidx(self.ltp.trans, input[1]) +end + +function SL:back_propagate(bp_err, next_bp_err, input, output) + --input is compressed, do nothing +end + +function SL:get_params() + local paramRepo = nerv.ParamRepo({self.ltp}) + return paramRepo +end diff --git a/nerv/examples/network_debug/timer.lua b/nerv/examples/network_debug/timer.lua new file mode 100644 index 0000000..2c54ca8 --- /dev/null +++ b/nerv/examples/network_debug/timer.lua @@ -0,0 +1,33 @@ +local Timer = nerv.class("nerv.Timer") + +function Timer:__init() + self.last = {} + self.rec = {} +end + +function Timer:tic(item) + self.last[item] = os.clock() +end + +function Timer:toc(item) + if (self.last[item] == nil) then + nerv.error("item not there") + end + if (self.rec[item] == nil) then + self.rec[item] = 0 + end + self.rec[item] = self.rec[item] + os.clock() - self.last[item] +end + +function Timer:check(item) + if self.rec[item]==nil then + nerv.error('item not there') + end + nerv.printf('"%s" lasts for %f secs.\n',item,self.rec[item]) +end + +function Timer:flush() + for key, value in pairs(self.rec) do + self.rec[key] = nil + end +end diff --git a/nerv/examples/network_debug/tnn.lua b/nerv/examples/network_debug/tnn.lua new file mode 100644 index 0000000..bf9f118 --- /dev/null +++ b/nerv/examples/network_debug/tnn.lua @@ -0,0 +1,136 @@ +nerv.include('select_linear.lua') + +local reader = nerv.class('nerv.TNNReader') + +function reader:__init(global_conf, data) + self.gconf = global_conf + self.offset = 0 + self.data = data +end + +function reader:get_batch(feeds) + self.offset = self.offset + 1 + if self.offset > #self.data then + return false + end + for i = 1, self.gconf.chunk_size do + feeds.inputs_m[i][1]:copy_from(self.data[self.offset].input[i]) + feeds.inputs_m[i][2]:copy_from(self.data[self.offset].output[i]:decompress(self.gconf.vocab_size)) + end + feeds.flags_now = self.data[self.offset].flags + feeds.flagsPack_now = self.data[self.offset].flagsPack + return true +end + +function reader:has_data(t, i) + return t <= self.data[self.offset].seq_len[i] +end + +function reader:get_err_input() + return self.data[self.offset].err_input +end + +local nn = nerv.class('nerv.NN') + +function nn:__init(global_conf, train_data, val_data, layers, connections) + self.gconf = global_conf + self.tnn = self:get_tnn(layers, connections) + self.train_data = self:get_data(train_data) + self.val_data = self:get_data(val_data) +end + +function nn:get_tnn(layers, connections) + self.gconf.dropout_rate = 0 + local layer_repo = nerv.LayerRepo(layers, self.gconf.pr, self.gconf) + local tnn = nerv.TNN('TNN', self.gconf, {dim_in = {1, self.gconf.vocab_size}, + dim_out = {1}, sub_layers = layer_repo, connections = connections, + clip = self.gconf.clip}) + tnn:init(self.gconf.batch_size, self.gconf.chunk_size) + return tnn +end + +function nn:get_data(data) + local ret = {} + for i = 1, #data do + ret[i] = {} + ret[i].input = data[i].input + ret[i].output = data[i].output + ret[i].flags = {} + ret[i].err_input = {} + for t = 1, self.gconf.chunk_size do + ret[i].flags[t] = {} + local err_input = self.gconf.mmat_type(self.gconf.batch_size, 1) + for j = 1, self.gconf.batch_size do + if t <= data[i].seq_len[j] then + ret[i].flags[t][j] = nerv.TNN.FC.SEQ_NORM + err_input[j - 1][0] = 1 + else + ret[i].flags[t][j] = 0 + err_input[j - 1][0] = 0 + end + end + ret[i].err_input[t] = self.gconf.cumat_type.new_from_host(err_input) + end + for j = 1, self.gconf.batch_size do + if data[i].seq_start[j] then + ret[i].flags[1][j] = bit.bor(ret[i].flags[1][j], nerv.TNN.FC.SEQ_START) + end + if data[i].seq_end[j] then + local t = data[i].seq_len[j] + ret[i].flags[t][j] = bit.bor(ret[i].flags[t][j], nerv.TNN.FC.SEQ_END) + end + end + ret[i].flagsPack = {} + for t = 1, self.gconf.chunk_size do + ret[i].flagsPack[t] = 0 + for j = 1, self.gconf.batch_size do + ret[i].flagsPack[t] = bit.bor(ret[i].flagsPack[t], ret[i].flags[t][j]) + end + end + ret[i].seq_len = data[i].seq_len + end + return ret +end + +function nn:process(data, do_train) + local total_err = 0 + local total_frame = 0 + local reader = nerv.TNNReader(self.gconf, data) + while true do + local r, _ = self.tnn:getfeed_from_reader(reader) + if not r then + break + end + if do_train then + self.gconf.dropout_rate = self.gconf.dropout + else + self.gconf.dropout_rate = 0 + end + self.tnn:net_propagate() + for t = 1, self.gconf.chunk_size do + local tmp = self.tnn.outputs_m[t][1]:new_to_host() + for i = 1, self.gconf.batch_size do + if reader:has_data(t, i) then + total_err = total_err + math.log10(math.exp(tmp[i - 1][0])) + total_frame = total_frame + 1 + end + end + end + if do_train then + local err_input = reader:get_err_input() + for i = 1, self.gconf.chunk_size do + self.tnn.err_inputs_m[i][1]:copy_from(err_input[i]) + end + self.tnn:net_backpropagate(false) + self.tnn:net_backpropagate(true) + end + collectgarbage('collect') + end + return math.pow(10, - total_err / total_frame) +end + +function nn:epoch() + local train_error = self:process(self.train_data, true) + local val_error = self:process(self.val_data, false) + return train_error, val_error +end diff --git a/nerv/io/init.lua b/nerv/io/init.lua index eb2e3e5..c36d850 100644 --- a/nerv/io/init.lua +++ b/nerv/io/init.lua @@ -52,8 +52,9 @@ function DataBuffer:__init(global_conf, buffer_conf) nerv.error_method_not_implemented() end -function DataBuffer:get_batch() +function DataBuffer:get_data() nerv.error_method_not_implemented() end nerv.include('sgd_buffer.lua') +nerv.include('seq_buffer.lua') diff --git a/nerv/io/seq_buffer.lua b/nerv/io/seq_buffer.lua new file mode 100644 index 0000000..e69de29 diff --git a/nerv/layer/dropout.lua b/nerv/layer/dropout.lua index 1a379c9..39a8963 100644 --- a/nerv/layer/dropout.lua +++ b/nerv/layer/dropout.lua @@ -2,8 +2,7 @@ local DropoutLayer = nerv.class("nerv.DropoutLayer", "nerv.Layer") function DropoutLayer:__init(id, global_conf, layer_conf) nerv.Layer.__init(self, id, global_conf, layer_conf) - self.rate = layer_conf.dropout_rate or global_conf.dropout_rate - if self.rate == nil then + if self.gconf.dropout_rate == nil then nerv.warning("[DropoutLayer:propagate] dropout rate is not set") end self:check_dim_len(1, 1) -- two inputs: nn output and label @@ -41,12 +40,12 @@ function DropoutLayer:propagate(input, output, t) if t == nil then t = 1 end - if self.rate then + if self.gconf.dropout_rate ~= 0 then self.mask[t]:rand_uniform() -- since we will lose a portion of the actvations, we multiply the -- activations by 1 / (1 - rate) to compensate - self.mask[t]:thres_mask(self.mask[t], self.rate, - 0, 1 / (1.0 - self.rate)) + self.mask[t]:thres_mask(self.mask[t], self.gconf.dropout_rate, + 0, 1 / (1.0 - self.gconf.dropout_rate)) output[1]:mul_elem(input[1], self.mask[t]) else output[1]:copy_fromd(input[1]) @@ -61,7 +60,7 @@ function DropoutLayer:back_propagate(bp_err, next_bp_err, input, output, t) if t == nil then t = 1 end - if self.rate then + if self.gconf.dropout_rate then next_bp_err[1]:mul_elem(bp_err[1], self.mask[t]) else next_bp_err[1]:copy_fromd(bp_err[1]) diff --git a/nerv/layer/graph.lua b/nerv/layer/graph.lua index 5f42fca..68d5f51 100644 --- a/nerv/layer/graph.lua +++ b/nerv/layer/graph.lua @@ -112,7 +112,7 @@ function GraphLayer:graph_init(layer_repo, connections) end for i = 1, #ref.dim_out do if ref.outputs[i] == nil then - nerv.error('dangling output port %d os layer %s', i, id) + nerv.error('dangling output port %d of layer %s', i, id) end end end diff --git a/nerv/layer/lstm.lua b/nerv/layer/lstm.lua index 641d5dc..5dbcc20 100644 --- a/nerv/layer/lstm.lua +++ b/nerv/layer/lstm.lua @@ -1,144 +1,85 @@ -local LSTMLayer = nerv.class('nerv.LSTMLayer', 'nerv.Layer') +local LSTMLayer = nerv.class('nerv.LSTMLayer', 'nerv.GraphLayer') function LSTMLayer:__init(id, global_conf, layer_conf) - -- input1:x - -- input2:h - -- input3:c nerv.Layer.__init(self, id, global_conf, layer_conf) - -- prepare a DAGLayer to hold the lstm structure + self:check_dim_len(1, 1) + + local din = layer_conf.dim_in[1] + local dout = layer_conf.dim_out[1] + local pr = layer_conf.pr if pr == nil then pr = nerv.ParamRepo({}, self.loc_type) end - - local function ap(str) - return self.id .. '.' .. str - end - local din1, din2, din3 = self.dim_in[1], self.dim_in[2], self.dim_in[3] - local dout1, dout2, dout3 = self.dim_out[1], self.dim_out[2], self.dim_out[3] - local layers = { - ["nerv.CombinerLayer"] = { - [ap("inputXDup")] = {dim_in = {din1}, - dim_out = {din1, din1, din1, din1}, - lambda = {1}}, - [ap("inputHDup")] = {dim_in = {din2}, - dim_out = {din2, din2, din2, din2}, - lambda = {1}}, - - [ap("inputCDup")] = {dim_in = {din3}, - dim_out = {din3, din3, din3}, - lambda = {1}}, - - [ap("mainCDup")] = {dim_in = {din3, din3}, - dim_out = {din3, din3, din3}, - lambda = {1, 1}}, + local layers = { + ['nerv.CombinerLayer'] = { + mainCombine = {dim_in = {dout, dout}, dim_out = {dout}, lambda = {1, 1}}, }, - ["nerv.AffineLayer"] = { - [ap("mainAffineL")] = {dim_in = {din1, din2}, - dim_out = {dout1}, - pr = pr}, + ['nerv.DuplicateLayer'] = { + inputDup = {dim_in = {din}, dim_out = {din, din, din, din}}, + outputDup = {dim_in = {dout}, dim_out = {dout, dout, dout, dout, dout}}, + cellDup = {dim_in = {dout}, dim_out = {dout, dout, dout, dout, dout}}, }, - ["nerv.TanhLayer"] = { - [ap("mainTanhL")] = {dim_in = {dout1}, dim_out = {dout1}}, - [ap("outputTanhL")] = {dim_in = {dout1}, dim_out = {dout1}}, + ['nerv.AffineLayer'] = { + mainAffine = {dim_in = {din, dout}, dim_out = {dout}, pr = pr}, }, - ["nerv.LSTMGateLayer"] = { - [ap("forgetGateL")] = {dim_in = {din1, din2, din3}, - dim_out = {din3}, pr = pr}, - [ap("inputGateL")] = {dim_in = {din1, din2, din3}, - dim_out = {din3}, pr = pr}, - [ap("outputGateL")] = {dim_in = {din1, din2, din3}, - dim_out = {din3}, pr = pr}, - + ['nerv.TanhLayer'] = { + mainTanh = {dim_in = {dout}, dim_out = {dout}}, + outputTanh = {dim_in = {dout}, dim_out = {dout}}, }, - ["nerv.ElemMulLayer"] = { - [ap("inputGMulL")] = {dim_in = {din3, din3}, - dim_out = {din3}}, - [ap("forgetGMulL")] = {dim_in = {din3, din3}, - dim_out = {din3}}, - [ap("outputGMulL")] = {dim_in = {din3, din3}, - dim_out = {din3}}, + ['nerv.LSTMGateLayer'] = { + forgetGate = {dim_in = {din, dout, dout}, dim_out = {dout}, pr = pr}, + inputGate = {dim_in = {din, dout, dout}, dim_out = {dout}, pr = pr}, + outputGate = {dim_in = {din, dout, dout}, dim_out = {dout}, pr = pr}, + }, + ['nerv.ElemMulLayer'] = { + inputGateMul = {dim_in = {dout, dout}, dim_out = {dout}}, + forgetGateMul = {dim_in = {dout, dout}, dim_out = {dout}}, + outputGateMul = {dim_in = {dout, dout}, dim_out = {dout}}, }, } - self.lrepo = nerv.LayerRepo(layers, pr, global_conf) - local connections = { - ["[1]"] = ap("inputXDup[1]"), - ["[2]"] = ap("inputHDup[1]"), - ["[3]"] = ap("inputCDup[1]"), - - [ap("inputXDup[1]")] = ap("mainAffineL[1]"), - [ap("inputHDup[1]")] = ap("mainAffineL[2]"), - [ap("mainAffineL[1]")] = ap("mainTanhL[1]"), - - [ap("inputXDup[2]")] = ap("inputGateL[1]"), - [ap("inputHDup[2]")] = ap("inputGateL[2]"), - [ap("inputCDup[1]")] = ap("inputGateL[3]"), - - [ap("inputXDup[3]")] = ap("forgetGateL[1]"), - [ap("inputHDup[3]")] = ap("forgetGateL[2]"), - [ap("inputCDup[2]")] = ap("forgetGateL[3]"), - - [ap("mainTanhL[1]")] = ap("inputGMulL[1]"), - [ap("inputGateL[1]")] = ap("inputGMulL[2]"), - - [ap("inputCDup[3]")] = ap("forgetGMulL[1]"), - [ap("forgetGateL[1]")] = ap("forgetGMulL[2]"), - - [ap("inputGMulL[1]")] = ap("mainCDup[1]"), - [ap("forgetGMulL[1]")] = ap("mainCDup[2]"), - - [ap("inputXDup[4]")] = ap("outputGateL[1]"), - [ap("inputHDup[4]")] = ap("outputGateL[2]"), - [ap("mainCDup[3]")] = ap("outputGateL[3]"), - - [ap("mainCDup[2]")] = "[2]", - [ap("mainCDup[1]")] = ap("outputTanhL[1]"), - - [ap("outputTanhL[1]")] = ap("outputGMulL[1]"), - [ap("outputGateL[1]")] = ap("outputGMulL[2]"), - - [ap("outputGMulL[1]")] = "[1]", + -- lstm input + {'[1]', 'inputDup[1]', 0}, + + -- input gate + {'inputDup[1]', 'inputGate[1]', 0}, + {'outputDup[1]', 'inputGate[2]', 1}, + {'cellDup[1]', 'inputGate[3]', 1}, + + -- forget gate + {'inputDup[2]', 'forgetGate[1]', 0}, + {'outputDup[2]', 'forgetGate[2]', 1}, + {'cellDup[2]', 'forgetGate[3]', 1}, + + -- lstm cell + {'forgetGate[1]', 'forgetGateMul[1]', 0}, + {'cellDup[3]', 'forgetGateMul[2]', 1}, + {'inputDup[3]', 'mainAffine[1]', 0}, + {'outputDup[3]', 'mainAffine[2]', 1}, + {'mainAffine[1]', 'mainTanh[1]', 0}, + {'inputGate[1]', 'inputGateMul[1]', 0}, + {'mainTanh[1]', 'inputGateMul[2]', 0}, + {'inputGateMul[1]', 'mainCombine[1]', 0}, + {'forgetGateMul[1]', 'mainCombine[2]', 0}, + {'mainCombine[1]', 'cellDup[1]', 0}, + + -- forget gate + {'inputDup[4]', 'outputGate[1]', 0}, + {'outputDup[4]', 'outputGate[2]', 1}, + {'cellDup[4]', 'outputGate[3]', 0}, + + -- lstm output + {'cellDup[5]', 'outputTanh[1]', 0}, + {'outputGate[1]', 'outputGateMul[1]', 0}, + {'outputTanh[1]', 'outputGateMul[2]', 0}, + {'outputGateMul[1]', 'outputDup[1]', 0}, + {'outputDup[5]', '[1]', 0}, } - self.dag = nerv.DAGLayer(self.id, global_conf, - {dim_in = self.dim_in, - dim_out = self.dim_out, - sub_layers = self.lrepo, - connections = connections}) - - self:check_dim_len(3, 2) -- x, h, c and h, c -end - -function LSTMLayer:bind_params() - local pr = layer_conf.pr - if pr == nil then - pr = nerv.ParamRepo({}, self.loc_type) - end - self.lrepo:rebind(pr) -end - -function LSTMLayer:init(batch_size, chunk_size) - self.dag:init(batch_size, chunk_size) -end - -function LSTMLayer:batch_resize(batch_size, chunk_size) - self.dag:batch_resize(batch_size, chunk_size) -end - -function LSTMLayer:update(bp_err, input, output, t) - self.dag:update(bp_err, input, output, t) -end - -function LSTMLayer:propagate(input, output, t) - self.dag:propagate(input, output, t) -end - -function LSTMLayer:back_propagate(bp_err, next_bp_err, input, output, t) - self.dag:back_propagate(bp_err, next_bp_err, input, output, t) -end -function LSTMLayer:get_params() - return self.dag:get_params() + self:add_prefix(layers, connections) + local layer_repo = nerv.LayerRepo(layers, pr, global_conf) + self:graph_init(layer_repo, connections) end diff --git a/nerv/layer/rnn.lua b/nerv/layer/rnn.lua index e59cf5b..0b5ccaa 100644 --- a/nerv/layer/rnn.lua +++ b/nerv/layer/rnn.lua @@ -4,6 +4,10 @@ function RNNLayer:__init(id, global_conf, layer_conf) nerv.Layer.__init(self, id, global_conf, layer_conf) self:check_dim_len(1, 1) + if layer_conf.activation == nil then + layer_conf.activation = 'nerv.SigmoidLayer' + end + local din = layer_conf.dim_in[1] local dout = layer_conf.dim_out[1] @@ -16,20 +20,20 @@ function RNNLayer:__init(id, global_conf, layer_conf) ['nerv.AffineLayer'] = { main = {dim_in = {din, dout}, dim_out = {dout}, pr = pr}, }, - ['nerv.SigmoidLayer'] = { - sigmoid = {dim_in = {dout}, dim_out = {dout}}, + [layers.activation] = { + activation = {dim_in = {dout}, dim_out = {dout}}, }, ['nerv.DuplicateLayer'] = { - dup = {dim_in = {dout}, dim_out = {dout, dout}}, - } + duplicate = {dim_in = {dout}, dim_out = {dout, dout}}, + }, } local connections = { {'[1]', 'main[1]', 0}, - {'main[1]', 'sigmoid[1]', 0}, - {'sigmoid[1]', 'dup[1]', 0}, - {'dup[1]', 'main[2]', 1}, - {'dup[2]', '[1]', 0}, + {'main[1]', 'activation[1]', 0}, + {'activation[1]', 'duplicate[1]', 0}, + {'duplicate[1]', 'main[2]', 1}, + {'duplicate[2]', '[1]', 0}, } self:add_prefix(layers, connections) diff --git a/nerv/matrix/init.lua b/nerv/matrix/init.lua index cf85004..722c780 100644 --- a/nerv/matrix/init.lua +++ b/nerv/matrix/init.lua @@ -40,7 +40,8 @@ end --- Assign each element in a matrix using the value returned by a callback `gen`. -- @param gen the callback used to generated the values in the matrix, to which -- the indices of row and column will be passed (e.g., `gen(i, j)`) -function nerv.Matrix:generate(gen) + +function nerv.Matrix:_generate(gen) if (self:dim() == 2) then for i = 0, self:nrow() - 1 do local row = self[i] @@ -55,6 +56,21 @@ function nerv.Matrix:generate(gen) end end +function nerv.Matrix:generate(gen) + local tmp + if nerv.is_type(self, 'nerv.CuMatrixFloat') then + tmp = nerv.MMatrixFloat(self:nrow(), self:ncol()) + elseif nerv.is_type(self, 'nerv.CuMatrixDouble') then + tmp = nerv.MMatrixDouble(self:nrow(), self:ncol()) + else + tmp = self + end + tmp:_generate(gen) + if nerv.is_type(self, 'nerv.CuMatrix') then + self:copy_fromh(tmp) + end +end + --- Create a fresh new matrix of the same matrix type (as `self`). -- @param nrow optional, the number of rows in the created matrix if specified, -- otherwise `self:nrow()` will be used -- cgit v1.2.3-70-g09d2