From 9642bd16922b288c81dee25f17373466ae6888c4 Mon Sep 17 00:00:00 2001 From: Determinant Date: Mon, 22 Feb 2016 12:10:35 +0800 Subject: clean up obsolete files --- nerv/Makefile | 9 +- .../lmptb/lmptb/layer/affine_recurrent.lua | 80 +++++ nerv/examples/lmptb/lmptb/layer/init.lua | 1 + nerv/layer/affine_recurrent.lua | 80 ----- nerv/layer/gate_fff.lua | 73 ---- nerv/layer/gru.lua | 2 +- nerv/layer/init.lua | 9 +- nerv/nn/layer_repo.lua | 3 + nerv/tnn/init.lua | 5 - nerv/tnn/layer_dag_t.lua | 386 --------------------- nerv/tnn/layersT/dropout_t.lua | 71 ---- nerv/tnn/layersT/gru_t.lua | 114 ------ nerv/tnn/layersT/lstm_t.lua | 124 ------- nerv/tnn/layersT/softmax_ce_t.lua | 93 ----- 14 files changed, 96 insertions(+), 954 deletions(-) create mode 100644 nerv/examples/lmptb/lmptb/layer/affine_recurrent.lua delete mode 100644 nerv/layer/affine_recurrent.lua delete mode 100644 nerv/layer/gate_fff.lua delete mode 100644 nerv/tnn/layer_dag_t.lua delete mode 100644 nerv/tnn/layersT/dropout_t.lua delete mode 100644 nerv/tnn/layersT/gru_t.lua delete mode 100644 nerv/tnn/layersT/lstm_t.lua delete mode 100644 nerv/tnn/layersT/softmax_ce_t.lua diff --git a/nerv/Makefile b/nerv/Makefile index ee4b9c0..c0db53a 100644 --- a/nerv/Makefile +++ b/nerv/Makefile @@ -7,7 +7,7 @@ INC_PATH := $(LUA_BINDIR)/../include/nerv LUA_DIR = $(INST_LUADIR)/nerv OBJ_DIR := $(BUILD_DIR)/objs ISUBDIR := io matrix luaT -SUBDIR := matrix io layer examples nn lib/io lib/luaT lib/matrix tnn/layersT +SUBDIR := matrix io layer examples nn tnn lib/io lib/luaT lib/matrix INC_SUBDIR := $(addprefix $(INC_PATH)/,$(ISUBDIR)) OBJ_SUBDIR := $(addprefix $(OBJ_DIR)/,$(SUBDIR)) @@ -31,12 +31,11 @@ OBJS := $(CORE_OBJS) $(NERV_OBJS) $(LUAT_OBJS) LIBS := $(INST_LIBDIR)/libnerv.so $(LIB_PATH)/libnervcore.so $(LIB_PATH)/libluaT.so LUA_LIBS := matrix/init.lua io/init.lua init.lua \ layer/init.lua layer/affine.lua layer/sigmoid.lua layer/tanh.lua layer/softmax_ce.lua layer/softmax.lua \ - layer/window.lua layer/bias.lua layer/combiner.lua layer/mse.lua layer/affine_recurrent.lua \ - layer/elem_mul.lua layer/gate_fff.lua layer/lstm.lua layer/lstm_gate.lua layer/dropout.lua layer/gru.lua \ + layer/window.lua layer/bias.lua layer/combiner.lua layer/mse.lua \ + layer/elem_mul.lua layer/lstm.lua layer/lstm_gate.lua layer/dropout.lua layer/gru.lua \ nn/init.lua nn/layer_repo.lua nn/param_repo.lua nn/layer_dag.lua \ io/sgd_buffer.lua \ - tnn/init.lua tnn/layer_dag_t.lua tnn/sutil.lua tnn/tnn.lua \ - tnn/layersT/dropout_t.lua tnn/layersT/lstm_t.lua tnn/layersT/gru_t.lua tnn/layersT/softmax_ce_t.lua + tnn/init.lua tnn/sutil.lua tnn/tnn.lua INCLUDE := -I $(LUA_INCDIR) -DLUA_USE_APICHECK #CUDA_BASE := /usr/local/cuda-7.0 diff --git a/nerv/examples/lmptb/lmptb/layer/affine_recurrent.lua b/nerv/examples/lmptb/lmptb/layer/affine_recurrent.lua new file mode 100644 index 0000000..fd6f38f --- /dev/null +++ b/nerv/examples/lmptb/lmptb/layer/affine_recurrent.lua @@ -0,0 +1,80 @@ +local Recurrent = nerv.class('nerv.AffineRecurrentLayer', 'nerv.Layer') + +--id: string +--global_conf: table +--layer_conf: table +--Get Parameters +function Recurrent:__init(id, global_conf, layer_conf) + self.id = id + self.dim_in = layer_conf.dim_in + self.dim_out = layer_conf.dim_out + self.gconf = global_conf + self.log_pre = self.id .. "[LOG]" + + self.bp = self:find_param("bp", layer_conf, global_conf, nerv.BiasParam, {1, self.dim_out[1]}) --layer_conf.bp + self.ltp_hh = self:find_param("ltphh", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[2], self.dim_out[1]}) --layer_conf.ltp_hh --from hidden to hidden + self.ltp_ih = self:find_param("ltpih", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[1], self.dim_out[1]}) --layer_conf.ltp_hh --from hidden to hidden + + self:check_dim_len(2, 1) + self.direct_update = layer_conf.direct_update + + self.clip = layer_conf.clip --clip error in back_propagate + if self.clip ~= nil then + nerv.info("%s creating, will clip the error by %f", self.log_pre, self.clip) + end +end + +--Check parameter +function Recurrent:init(batch_size) + if self.ltp_hh.trans:ncol() ~= self.bp.trans:ncol() or + self.ltp_ih.trans:ncol() ~= self.bp.trans:ncol() then + nerv.error("mismatching dimensions of ltp and bp") + end + if self.dim_in[1] ~= self.ltp_ih.trans:nrow() or + self.dim_in[2] ~= self.ltp_hh.trans:nrow() then + nerv.error("mismatching dimensions of ltp and input") + end + if (self.dim_out[1] ~= self.bp.trans:ncol()) then + nerv.error("mismatching dimensions of bp and output") + end + + self.ltp_hh:train_init() + self.ltp_ih:train_init() + self.bp:train_init() +end + +function Recurrent:batch_resize(batch_size) + -- do nothing +end + +function Recurrent:update(bp_err, input, output) + self.ltp_ih:update_by_err_input(bp_err[1], input[1]) + self.ltp_hh:update_by_err_input(bp_err[1], input[2]) + self.bp:update_by_gradient(bp_err[1]:colsum()) +end + +function Recurrent:propagate(input, output) + output[1]:mul(input[1], self.ltp_ih.trans, 1.0, 0.0, 'N', 'N') + output[1]:mul(input[2], self.ltp_hh.trans, 1.0, 1.0, 'N', 'N') + output[1]:add_row(self.bp.trans, 1.0) +end + +function Recurrent:back_propagate(bp_err, next_bp_err, input, output) + next_bp_err[1]:mul(bp_err[1], self.ltp_ih.trans, 1.0, 0.0, 'N', 'T') + next_bp_err[2]:mul(bp_err[1], self.ltp_hh.trans, 1.0, 0.0, 'N', 'T') + --[[ + for i = 0, next_bp_err[2]:nrow() - 1 do + for j = 0, next_bp_err[2]:ncol() - 1 do + if (next_bp_err[2][i][j] > 10) then next_bp_err[2][i][j] = 10 end + if (next_bp_err[2][i][j] < -10) then next_bp_err[2][i][j] = -10 end + end + end + ]]-- + if self.clip ~= nil then + next_bp_err[2]:clip(-self.clip, self.clip) + end +end + +function Recurrent:get_params() + return nerv.ParamRepo({self.ltp_ih, self.ltp_hh, self.bp}) +end diff --git a/nerv/examples/lmptb/lmptb/layer/init.lua b/nerv/examples/lmptb/lmptb/layer/init.lua index ceae009..e20e2dc 100644 --- a/nerv/examples/lmptb/lmptb/layer/init.lua +++ b/nerv/examples/lmptb/lmptb/layer/init.lua @@ -1,4 +1,5 @@ require 'lmptb.layer.select_linear' +require 'lmptb.layer.affine_recurrent' require 'lmptb.layer.affine_recurrent_plusvec' --require 'lmptb.layer.gru_t' require 'lmptb.layer.lm_affine_recurrent' diff --git a/nerv/layer/affine_recurrent.lua b/nerv/layer/affine_recurrent.lua deleted file mode 100644 index fd6f38f..0000000 --- a/nerv/layer/affine_recurrent.lua +++ /dev/null @@ -1,80 +0,0 @@ -local Recurrent = nerv.class('nerv.AffineRecurrentLayer', 'nerv.Layer') - ---id: string ---global_conf: table ---layer_conf: table ---Get Parameters -function Recurrent:__init(id, global_conf, layer_conf) - self.id = id - self.dim_in = layer_conf.dim_in - self.dim_out = layer_conf.dim_out - self.gconf = global_conf - self.log_pre = self.id .. "[LOG]" - - self.bp = self:find_param("bp", layer_conf, global_conf, nerv.BiasParam, {1, self.dim_out[1]}) --layer_conf.bp - self.ltp_hh = self:find_param("ltphh", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[2], self.dim_out[1]}) --layer_conf.ltp_hh --from hidden to hidden - self.ltp_ih = self:find_param("ltpih", layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[1], self.dim_out[1]}) --layer_conf.ltp_hh --from hidden to hidden - - self:check_dim_len(2, 1) - self.direct_update = layer_conf.direct_update - - self.clip = layer_conf.clip --clip error in back_propagate - if self.clip ~= nil then - nerv.info("%s creating, will clip the error by %f", self.log_pre, self.clip) - end -end - ---Check parameter -function Recurrent:init(batch_size) - if self.ltp_hh.trans:ncol() ~= self.bp.trans:ncol() or - self.ltp_ih.trans:ncol() ~= self.bp.trans:ncol() then - nerv.error("mismatching dimensions of ltp and bp") - end - if self.dim_in[1] ~= self.ltp_ih.trans:nrow() or - self.dim_in[2] ~= self.ltp_hh.trans:nrow() then - nerv.error("mismatching dimensions of ltp and input") - end - if (self.dim_out[1] ~= self.bp.trans:ncol()) then - nerv.error("mismatching dimensions of bp and output") - end - - self.ltp_hh:train_init() - self.ltp_ih:train_init() - self.bp:train_init() -end - -function Recurrent:batch_resize(batch_size) - -- do nothing -end - -function Recurrent:update(bp_err, input, output) - self.ltp_ih:update_by_err_input(bp_err[1], input[1]) - self.ltp_hh:update_by_err_input(bp_err[1], input[2]) - self.bp:update_by_gradient(bp_err[1]:colsum()) -end - -function Recurrent:propagate(input, output) - output[1]:mul(input[1], self.ltp_ih.trans, 1.0, 0.0, 'N', 'N') - output[1]:mul(input[2], self.ltp_hh.trans, 1.0, 1.0, 'N', 'N') - output[1]:add_row(self.bp.trans, 1.0) -end - -function Recurrent:back_propagate(bp_err, next_bp_err, input, output) - next_bp_err[1]:mul(bp_err[1], self.ltp_ih.trans, 1.0, 0.0, 'N', 'T') - next_bp_err[2]:mul(bp_err[1], self.ltp_hh.trans, 1.0, 0.0, 'N', 'T') - --[[ - for i = 0, next_bp_err[2]:nrow() - 1 do - for j = 0, next_bp_err[2]:ncol() - 1 do - if (next_bp_err[2][i][j] > 10) then next_bp_err[2][i][j] = 10 end - if (next_bp_err[2][i][j] < -10) then next_bp_err[2][i][j] = -10 end - end - end - ]]-- - if self.clip ~= nil then - next_bp_err[2]:clip(-self.clip, self.clip) - end -end - -function Recurrent:get_params() - return nerv.ParamRepo({self.ltp_ih, self.ltp_hh, self.bp}) -end diff --git a/nerv/layer/gate_fff.lua b/nerv/layer/gate_fff.lua deleted file mode 100644 index 6082e27..0000000 --- a/nerv/layer/gate_fff.lua +++ /dev/null @@ -1,73 +0,0 @@ -local GateFFFLayer = nerv.class('nerv.GateFLayer', 'nerv.Layer') --Full matrix gate - -function GateFFFLayer:__init(id, global_conf, layer_conf) - self.id = id - self.dim_in = layer_conf.dim_in - self.dim_out = layer_conf.dim_out - self.gconf = global_conf - - for i = 1, #self.dim_in do - self["ltp" .. i] = self:find_param("ltp" .. i, layer_conf, global_conf, nerv.LinearTransParam, {self.dim_in[i], self.dim_out[1]}) --layer_conf.ltp - end - self.bp = self:find_param("bp", layer_conf, global_conf, nerv.BiasParam, {1, self.dim_out[1]})--layer_conf.bp - - self:check_dim_len(-1, 1) --accept multiple inputs -end - -function GateFFFLayer:init(batch_size) - for i = 1, #self.dim_in do - if self["ltp" .. i].trans:ncol() ~= self.bp.trans:ncol() then - nerv.error("mismatching dimensions of linear transform and bias paramter") - end - if self.dim_in[i] ~= self["ltp" .. i].trans:nrow() then - nerv.error("mismatching dimensions of linear transform parameter and input") - end - self["ltp"..i]:train_init() - end - - if self.dim_out[1] ~= self.ltp1.trans:ncol() then - nerv.error("mismatching dimensions of linear transform parameter and output") - end - self.bp:train_init() - self.err_bakm = self.gconf.cumat_type(batch_size, self.dim_out[1]) -end - -function GateFFFLayer:batch_resize(batch_size) - if self.err_m:nrow() ~= batch_size then - self.err_bakm = self.gconf.cumat_type(batch_size, self.dim_out[1]) - end -end - -function GateFFFLayer:propagate(input, output) - -- apply linear transform - output[1]:mul(input[1], self.ltp1.trans, 1.0, 0.0, 'N', 'N') - for i = 2, #self.dim_in do - output[1]:mul(input[i], self["ltp" .. i].trans, 1.0, 1.0, 'N', 'N') - end - -- add bias - output[1]:add_row(self.bp.trans, 1.0) - output[1]:sigmoid(output[1]) -end - -function GateFFFLayer:back_propagate(bp_err, next_bp_err, input, output) - self.err_bakm:sigmoid_grad(bp_err[1], output[1]) - for i = 1, #self.dim_in do - next_bp_err[i]:mul(self.err_bakm, self["ltp" .. i].trans, 1.0, 0.0, 'N', 'T') - end -end - -function GateFFFLayer:update(bp_err, input, output) - self.err_bakm:sigmoid_grad(bp_err[1], output[1]) - for i = 1, #self.dim_in do - self["ltp" .. i]:update_by_err_input(self.err_bakm, input[i]) - end - self.bp:update_by_gradient(self.err_bakm:colsum()) -end - -function GateFFFLayer:get_params() - local pr = nerv.ParamRepo({self.bp}) - for i = 1, #self.dim_in do - pr:add(self["ltp" .. i].id, self["ltp" .. i]) - end - return pr -end diff --git a/nerv/layer/gru.lua b/nerv/layer/gru.lua index 2162e28..e81d21a 100644 --- a/nerv/layer/gru.lua +++ b/nerv/layer/gru.lua @@ -48,7 +48,7 @@ function GRULayer:__init(id, global_conf, layer_conf) ["nerv.TanhLayer"] = { [ap("mainTanhL")] = {{}, {dim_in = {dout1}, dim_out = {dout1}}}, }, - ["nerv.GateFLayer"] = { + ["nerv.LSTMGateLayer"] = { [ap("resetGateL")] = {{}, {dim_in = {din1, din2}, dim_out = {din2}, pr = pr}}, diff --git a/nerv/layer/init.lua b/nerv/layer/init.lua index 6b7a1d7..54f33ae 100644 --- a/nerv/layer/init.lua +++ b/nerv/layer/init.lua @@ -109,11 +109,16 @@ nerv.include('bias.lua') nerv.include('window.lua') nerv.include('mse.lua') nerv.include('combiner.lua') -nerv.include('affine_recurrent.lua') nerv.include('softmax.lua') nerv.include('elem_mul.lua') -nerv.include('gate_fff.lua') nerv.include('lstm.lua') nerv.include('lstm_gate.lua') nerv.include('dropout.lua') nerv.include('gru.lua') + +-- The following lines are for backward compatibility, and will be removed in +-- the future. The use of these names are deprecated. +nerv.DropoutLayerT = nerv.DropoutLayer +nerv.GRULayerT = nerv.GRULayer +nerv.LSTMLayerT = nerv.LSTMLayer +nerv.SoftmaxCELayerT = nerv.SoftmaxCELayer diff --git a/nerv/nn/layer_repo.lua b/nerv/nn/layer_repo.lua index 2f8de08..3d3a79f 100644 --- a/nerv/nn/layer_repo.lua +++ b/nerv/nn/layer_repo.lua @@ -9,6 +9,9 @@ function LayerRepo:add_layers(layer_spec, param_repo, global_conf) local layers = self.layers for ltype, llist in pairs(layer_spec) do local layer_type = nerv.get_type(ltype) + if layer_type == nil then + nerv.error('layer type `%s` not found', ltype) + end for id, spec in pairs(llist) do if layers[id] ~= nil then nerv.error("a layer with id %s already exists", id) diff --git a/nerv/tnn/init.lua b/nerv/tnn/init.lua index 7faca31..44ce26b 100644 --- a/nerv/tnn/init.lua +++ b/nerv/tnn/init.lua @@ -45,8 +45,3 @@ end nerv.include('sutil.lua') nerv.include('tnn.lua') -nerv.include('layersT/softmax_ce_t.lua') -nerv.include('layersT/lstm_t.lua') -nerv.include('layersT/gru_t.lua') -nerv.include('layersT/dropout_t.lua') -nerv.include('layer_dag_t.lua') diff --git a/nerv/tnn/layer_dag_t.lua b/nerv/tnn/layer_dag_t.lua deleted file mode 100644 index b651f4e..0000000 --- a/nerv/tnn/layer_dag_t.lua +++ /dev/null @@ -1,386 +0,0 @@ -local DAGLayerT = nerv.class("nerv.DAGLayerT", "nerv.LayerT") - -local function parse_id(str) - local id, port, _ - _, _, id, port = string.find(str, "([a-zA-Z0-9_.]+)%[([0-9]+)%]") - if id == nil or port == nil then - _, _, id, port = string.find(str, "(.+)%[([0-9]+)%]") - if not (id == "" or id == "") then - nerv.error("wrong format of connection id") - end - end - port = tonumber(port) - return id, port -end - -local function discover(id, layers, layer_repo) - local ref = layers[id] - if id == "" or id == "" then - return nil - end - if ref == nil then - local layer = layer_repo:get_layer(id) - local dim_in, dim_out = layer:get_dim() - ref = { - id = layer.id, - layer = layer, - inputs = {}, - outputs = {}, - err_inputs = {}, - err_outputs = {}, - next_layers = {}, - input_len = #dim_in, - output_len = #dim_out, - in_deg = 0, - visited = false - } - layers[id] = ref - end - return ref -end - -function DAGLayerT:__init(id, global_conf, layer_conf) - local layers = {} - local inputs = {} - local outputs = {} - local dim_in = layer_conf.dim_in - local dim_out = layer_conf.dim_out - local parsed_conn = {} - for from, to in pairs(layer_conf.connections) do - local id_from, port_from = parse_id(from) - local id_to, port_to = parse_id(to) - local ref_from = discover(id_from, layers, layer_conf.sub_layers) - local ref_to = discover(id_to, layers, layer_conf.sub_layers) - local input_dim, output_dim, _ - if id_from == "" then - input_dim, _ = ref_to.layer:get_dim() - if dim_in[port_from] ~= input_dim[port_to] then - nerv.error("mismatching data dimension between %s and %s", from, to) - end - inputs[port_from] = {ref_to, port_to} - if ref_to.inputs[1] == nil then - ref_to.inputs[1] = {} - end - if ref_to.inputs[1][port_to] ~= nil then - nerv.error("port(%d) for layer(%s) already attached", port_to, to) - end - ref_to.inputs[1][port_to] = inputs -- just a place holder - elseif id_to == "" then - _, output_dim = ref_from.layer:get_dim() - if output_dim[port_from] ~= dim_out[port_to] then - nerv.error("mismatching data dimension between %s and %s", from, to) - end - outputs[port_to] = {ref_from, port_from} - if ref_from.outputs[1] == nil then - ref_from.outputs[1] = {} - end - if ref_from.outputs[1][port_from] ~= nil then - nerv.error("port(%d) for layer(%s) already attached", port_from, from) - end - ref_from.outputs[1] = {} - ref_from.outputs[1][port_from] = outputs -- just a place holder - else - _, output_dim = ref_from.layer:get_dim() - input_dim, _ = ref_to.layer:get_dim() - if output_dim[port_from] ~= input_dim[port_to] then - nerv.error("mismatching data dimension between %s and %s", from, to) - end - - table.insert(parsed_conn, - {{ref_from, port_from}, {ref_to, port_to}}) - table.insert(ref_from.next_layers, ref_to) -- add edge - ref_to.in_deg = ref_to.in_deg + 1 -- increase the in-degree of the target layer - end - end - - -- topology sort - local queue = {} - local l = 1 - local r = 1 - for id, ref in pairs(layers) do - if ref.in_deg == 0 then - table.insert(queue, ref) - nerv.info("adding source layer: %s", id) - r = r + 1 - end - end - if l == r then - nerv.error("loop detected") - end - while l < r do - local cur = queue[l] - cur.visited = true - l = l + 1 - for _, nl in pairs(cur.next_layers) do - nl.in_deg = nl.in_deg - 1 - if nl.in_deg == 0 then - table.insert(queue, nl) - r = r + 1 - end - end - end - for i = 1, #queue do - nerv.info("enqueued layer: %s %s", queue[i].layer, queue[i].layer.id) - end - - for id, ref in pairs(layers) do - -- check wether the graph is connected - if ref.visited == false then - nerv.warning("layer %s is ignored", id) - end - end - - self.layers = layers - self.inputs = inputs - self.outputs = outputs - self.id = id - self.dim_in = dim_in - self.dim_out = dim_out - self.parsed_conn = parsed_conn - self.queue = queue - self.gconf = global_conf -end - -function DAGLayerT:init(batch_size, chunk_size) - nerv.info("initing DAGLayerT %s...", self.id) - if chunk_size == nil then - chunk_size = 1 - nerv.info("(Initing DAGLayerT) chunk_size is nil, setting it to default 1\n") - end - - self.chunk_size = chunk_size - - for i, conn in ipairs(self.parsed_conn) do - local _, output_dim - local ref_from, port_from, ref_to, port_to - ref_from, port_from = unpack(conn[1]) - ref_to, port_to = unpack(conn[2]) - _, output_dim = ref_from.layer:get_dim() - local dim = 1 - if output_dim[port_from] > 0 then - dim = output_dim[port_from] - end - - for t = 1, chunk_size do - local mid = self.gconf.cumat_type(batch_size, dim) - local err_mid = mid:create() - - if ref_from.outputs[t] == nil then - ref_from.outputs[t] = {} - end - if ref_to.inputs[t] == nil then - ref_to.inputs[t] = {} - end - if ref_to.err_outputs[t] == nil then - ref_to.err_outputs[t] = {} - end - if ref_from.err_inputs[t] == nil then - ref_from.err_inputs[t] = {} - end - - ref_from.outputs[t][port_from] = mid - ref_to.inputs[t][port_to] = mid - - ref_from.err_inputs[t][port_from] = err_mid - ref_to.err_outputs[t][port_to] = err_mid - end - end - for id, ref in pairs(self.layers) do - for i = 1, ref.input_len do - if ref.inputs[1][i] == nil then --peek at time 1 - nerv.error("dangling input port %d of layer %s", i, id) - end - end - for i = 1, ref.output_len do - if ref.outputs[1][i] == nil then --peek at time 1 - nerv.error("dangling output port %d of layer %s", i, id) - end - end - -- initialize sub layers - ref.layer:init(batch_size, chunk_size) - end - for i = 1, #self.dim_in do - if self.inputs[i] == nil then - nerv.error("dangling port %d of layer ", i) - end - end - for i = 1, #self.dim_out do - if self.outputs[i] == nil then - nerv.error("dangling port %d of layer ", i) - end - end -end - -function DAGLayerT:batch_resize(batch_size, chunk_size) - if chunk_size == nil then - chunk_size = 1 - end - if batch_size ~= self.gconf.batch_size - or chunk_size ~= self.gconf.chunk_size then - nerv.printf("warn: in DAGLayerT:batch_resize, the batch_size ~= gconf.batch_size, or chunk_size ~= gconf.chunk_size") - end - self.gconf.batch_size = batch_size - self.gconf.chunk_size = chunk_size - - for i, conn in ipairs(self.parsed_conn) do - local _, output_dim - local ref_from, port_from, ref_to, port_to - ref_from, port_from = unpack(conn[1]) - ref_to, port_to = unpack(conn[2]) - _, output_dim = ref_from.layer:get_dim() - - for t = 1, chunk_size do - if ref_from.outputs[t] == nil then - ref_from.outputs[t] = {} - end - if ref_to.inputs[t] == nil then - ref_to.inputs[t] = {} - end - if ref_from.err_outputs[t] == nil then - ref_from.err_outputs[t] = {} - end - if ref_from.err_inputs[t] == nil then - ref_from.err_inputs[t] = {} - end - - local mid = self.gconf.cumat_type(batch_size, dim) - local err_mid = mid:create() - - ref_from.outputs[t][port_from] = mid - ref_to.inputs[t][port_to] = mid - - ref_from.err_inputs[t][port_from] = err_mid - ref_to.err_outputs[t][port_to] = err_mid - end - end - for id, ref in pairs(self.layers) do - ref.layer:batch_resize(batch_size, chunk_size) - end - collectgarbage("collect") -end - -function DAGLayerT:set_inputs(input, t) - for i = 1, #self.dim_in do - if input[i] == nil then - nerv.error("some input is not provided"); - end - local layer = self.inputs[i][1] - local port = self.inputs[i][2] - if layer.inputs[t] == nil then - layer.inputs[t] = {} - end - layer.inputs[t][port] = input[i] - end -end - -function DAGLayerT:set_outputs(output, t) - for i = 1, #self.dim_out do - if output[i] == nil then - nerv.error("some output is not provided"); - end - local layer = self.outputs[i][1] - local port = self.outputs[i][2] - if layer.outputs[t] == nil then - layer.outputs[t] = {} - end - layer.outputs[t][port] = output[i] - end -end - -function DAGLayerT:set_err_inputs(bp_err, t) - for i = 1, #self.dim_out do - local layer = self.outputs[i][1] - local port = self.outputs[i][2] - if layer.err_inputs[t] == nil then - layer.err_inputs[t] = {} - end - layer.err_inputs[t][port] = bp_err[i] - end -end - -function DAGLayerT:set_err_outputs(next_bp_err, t) - for i = 1, #self.dim_in do - local layer = self.inputs[i][1] - local port = self.inputs[i][2] - if layer.err_outputs[t] == nil then - layer.err_outputs[t] = {} - end - layer.err_outputs[t][port] = next_bp_err[i] - end -end - -function DAGLayerT:update(bp_err, input, output, t) - if t == nil then - t = 1 - end - self:set_err_inputs(bp_err, t) - self:set_inputs(input, t) - self:set_outputs(output, t) - for id, ref in pairs(self.queue) do - ref.layer:update(ref.err_inputs[t], ref.inputs[t], ref.outputs[t], t) - end -end - -function DAGLayerT:propagate(input, output, t) - if t == nil then - t = 1 - end - self:set_inputs(input, t) - self:set_outputs(output, t) - local ret = false - for i = 1, #self.queue do - local ref = self.queue[i] - --print("debug DAGLAyerT:propagate", ref.id, t) - ret = ref.layer:propagate(ref.inputs[t], ref.outputs[t], t) - end - return ret -end - -function DAGLayerT:back_propagate(bp_err, next_bp_err, input, output, t) - if t == nil then - t = 1 - end - self:set_err_outputs(next_bp_err, t) - self:set_err_inputs(bp_err, t) - self:set_inputs(input, t) - self:set_outputs(output, t) - for i = #self.queue, 1, -1 do - local ref = self.queue[i] - ref.layer:back_propagate(ref.err_inputs[t], ref.err_outputs[t], ref.inputs[t], ref.outputs[t], t) - end -end - -function DAGLayerT:get_params() - local param_repos = {} - for id, ref in pairs(self.queue) do - table.insert(param_repos, ref.layer:get_params()) - end - return nerv.ParamRepo.merge(param_repos) -end - -DAGLayerT.PORT_TYPES = { - INPUT = {}, - OUTPUT = {}, - ERR_INPUT = {}, - ERR_OUTPUT = {} -} - -function DAGLayerT:get_intermediate(id, port_type) - if id == "" or id == "" then - nerv.error("an actual real layer id is expected") - end - local layer = self.layers[id] - if layer == nil then - nerv.error("layer id %s not found", id) - end - if port_type == DAGLayerT.PORT_TYPES.INPUT then - return layer.inputs - elseif port_type == DAGLayerT.PORT_TYPES.OUTPUT then - return layer.outputs - elseif port_type == DAGLayerT.PORT_TYPES.ERR_INPUT then - return layer.err_inputs - elseif port_type == DAGLayerT.PORT_TYPES.ERR_OUTPUT then - return layer.err_outputs - end - nerv.error("unrecognized port type") -end diff --git a/nerv/tnn/layersT/dropout_t.lua b/nerv/tnn/layersT/dropout_t.lua deleted file mode 100644 index 4351285..0000000 --- a/nerv/tnn/layersT/dropout_t.lua +++ /dev/null @@ -1,71 +0,0 @@ -local Dropout = nerv.class("nerv.DropoutLayerT", "nerv.LayerT") - -function Dropout:__init(id, global_conf, layer_conf) - self.id = id - self.gconf = global_conf - self.dim_in = layer_conf.dim_in - self.dim_out = layer_conf.dim_out - self:check_dim_len(1, 1) -- two inputs: nn output and label -end - -function Dropout:init(batch_size, chunk_size) - if self.dim_in[1] ~= self.dim_out[1] then - nerv.error("mismatching dimensions of input and output") - end - if chunk_size == nil then - chunk_size = 1 - end - self.mask_t = {} - for t = 1, chunk_size do - self.mask_t[t] = self.gconf.cumat_type(batch_size, self.dim_in[1]) - end -end - -function Dropout:batch_resize(batch_size, chunk_size) - if chunk_size == nil then - chunk_size = 1 - end - for t = 1, chunk_size do - if self.mask_t[t] == nil or self.mask_t[t]:nrow() ~= batch_size then - self.mask_t[t] = self.gconf.cumat_type(batch_size, self.dim_in[1]) - end - end -end - -function Dropout:propagate(input, output, t) - if t == nil then - t = 1 - end - if self.gconf.dropout_rate == nil then - nerv.info("DropoutLayerT:propagate warning, global_conf.dropout_rate is nil, setting it zero") - self.gconf.dropout_rate = 0 - end - - if self.gconf.dropout_rate == 0 then - output[1]:copy_fromd(input[1]) - else - self.mask_t[t]:rand_uniform() - --since we will lose a portion of the actvations, we multiply the activations by 1/(1-dr) to compensate - self.mask_t[t]:thres_mask(self.mask_t[t], self.gconf.dropout_rate, 0, 1 / (1.0 - self.gconf.dropout_rate)) - output[1]:mul_elem(input[1], self.mask_t[t]) - end -end - -function Dropout:update(bp_err, input, output, t) - -- no params, therefore do nothing -end - -function Dropout:back_propagate(bp_err, next_bp_err, input, output, t) - if t == nil then - t = 1 - end - if self.gconf.dropout_rate == 0 then - next_bp_err[1]:copy_fromd(bp_err[1]) - else - next_bp_err[1]:mul_elem(bp_err[1], self.mask_t[t]) - end -end - -function Dropout:get_params() - return nerv.ParamRepo({}) -end diff --git a/nerv/tnn/layersT/gru_t.lua b/nerv/tnn/layersT/gru_t.lua deleted file mode 100644 index 8f15cc8..0000000 --- a/nerv/tnn/layersT/gru_t.lua +++ /dev/null @@ -1,114 +0,0 @@ -local GRULayerT = nerv.class('nerv.GRULayerT', 'nerv.LayerT') - -function GRULayerT:__init(id, global_conf, layer_conf) - --input1:x input2:h input3:c(h^~) - self.id = id - self.dim_in = layer_conf.dim_in - self.dim_out = layer_conf.dim_out - self.gconf = global_conf - - if self.dim_in[2] ~= self.dim_out[1] then - nerv.error("dim_in[2](%d) mismatch with dim_out[1](%d)", self.dim_in[2], self.dim_out[1]) - end - - --prepare a DAGLayerT to hold the lstm structure - local pr = layer_conf.pr - if pr == nil then - pr = nerv.ParamRepo() - end - - local function ap(str) - return self.id .. '.' .. str - end - - local layers = { - ["nerv.CombinerLayer"] = { - [ap("inputXDup")] = {{}, {["dim_in"] = {self.dim_in[1]}, - ["dim_out"] = {self.dim_in[1], self.dim_in[1], self.dim_in[1]}, ["lambda"] = {1}}}, - [ap("inputHDup")] = {{}, {["dim_in"] = {self.dim_in[2]}, - ["dim_out"] = {self.dim_in[2], self.dim_in[2], self.dim_in[2], self.dim_in[2], self.dim_in[2]}, ["lambda"] = {1}}}, - [ap("updateGDup")] = {{}, {["dim_in"] = {self.dim_in[2]}, - ["dim_out"] = {self.dim_in[2], self.dim_in[2]}, ["lambda"] = {1}}}, - [ap("updateMergeL")] = {{}, {["dim_in"] = {self.dim_in[2], self.dim_in[2], self.dim_in[2]}, ["dim_out"] = {self.dim_out[1]}, - ["lambda"] = {1, -1, 1}}}, - }, - ["nerv.AffineLayer"] = { - [ap("mainAffineL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2]}, ["dim_out"] = {self.dim_out[1]}, ["pr"] = pr}}, - }, - ["nerv.TanhLayer"] = { - [ap("mainTanhL")] = {{}, {["dim_in"] = {self.dim_out[1]}, ["dim_out"] = {self.dim_out[1]}}}, - }, - ["nerv.GateFLayer"] = { - [ap("resetGateL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2]}, - ["dim_out"] = {self.dim_in[2]}, ["pr"] = pr}}, - [ap("updateGateL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2]}, - ["dim_out"] = {self.dim_in[2]}, ["pr"] = pr}}, - }, - ["nerv.ElemMulLayer"] = { - [ap("resetGMulL")] = {{}, {["dim_in"] = {self.dim_in[2], self.dim_in[2]}, ["dim_out"] = {self.dim_in[2]}}}, - [ap("updateGMulCL")] = {{}, {["dim_in"] = {self.dim_in[2], self.dim_in[2]}, ["dim_out"] = {self.dim_in[2]}}}, - [ap("updateGMulHL")] = {{}, {["dim_in"] = {self.dim_in[2], self.dim_in[2]}, ["dim_out"] = {self.dim_in[2]}}}, - }, - } - - local layerRepo = nerv.LayerRepo(layers, pr, global_conf) - - local connections_t = { - ["[1]"] = ap("inputXDup[1]"), - ["[2]"] = ap("inputHDup[1]"), - - [ap("inputXDup[1]")] = ap("resetGateL[1]"), - [ap("inputHDup[1]")] = ap("resetGateL[2]"), - [ap("inputXDup[2]")] = ap("updateGateL[1]"), - [ap("inputHDup[2]")] = ap("updateGateL[2]"), - [ap("updateGateL[1]")] = ap("updateGDup[1]"), - - [ap("resetGateL[1]")] = ap("resetGMulL[1]"), - [ap("inputHDup[3]")] = ap("resetGMulL[2]"), - - [ap("inputXDup[3]")] = ap("mainAffineL[1]"), - [ap("resetGMulL[1]")] = ap("mainAffineL[2]"), - [ap("mainAffineL[1]")] = ap("mainTanhL[1]"), - - [ap("updateGDup[1]")] = ap("updateGMulHL[1]"), - [ap("inputHDup[4]")] = ap("updateGMulHL[2]"), - [ap("updateGDup[2]")] = ap("updateGMulCL[1]"), - [ap("mainTanhL[1]")] = ap("updateGMulCL[2]"), - - [ap("inputHDup[5]")] = ap("updateMergeL[1]"), - [ap("updateGMulHL[1]")] = ap("updateMergeL[2]"), - [ap("updateGMulCL[1]")] = ap("updateMergeL[3]"), - - [ap("updateMergeL[1]")] = "[1]", - } - - self.dagL = nerv.DAGLayerT(self.id, global_conf, - {["dim_in"] = self.dim_in, ["dim_out"] = self.dim_out, ["sub_layers"] = layerRepo, - ["connections"] = connections_t}) - - self:check_dim_len(2, 1) -- x, h and h -end - -function GRULayerT:init(batch_size, chunk_size) - self.dagL:init(batch_size, chunk_size) -end - -function GRULayerT:batch_resize(batch_size, chunk_size) - self.dagL:batch_resize(batch_size, chunk_size) -end - -function GRULayerT:update(bp_err, input, output, t) - self.dagL:update(bp_err, input, output, t) -end - -function GRULayerT:propagate(input, output, t) - self.dagL:propagate(input, output, t) -end - -function GRULayerT:back_propagate(bp_err, next_bp_err, input, output, t) - self.dagL:back_propagate(bp_err, next_bp_err, input, output, t) -end - -function GRULayerT:get_params() - return self.dagL:get_params() -end diff --git a/nerv/tnn/layersT/lstm_t.lua b/nerv/tnn/layersT/lstm_t.lua deleted file mode 100644 index 04d0600..0000000 --- a/nerv/tnn/layersT/lstm_t.lua +++ /dev/null @@ -1,124 +0,0 @@ -local LSTMLayerT = nerv.class('nerv.LSTMLayerT', 'nerv.LayerT') - -function LSTMLayerT:__init(id, global_conf, layer_conf) - --input1:x input2:h input3:c - self.id = id - self.dim_in = layer_conf.dim_in - self.dim_out = layer_conf.dim_out - self.gconf = global_conf - - --prepare a DAGLayerT to hold the lstm structure - local pr = layer_conf.pr - if pr == nil then - pr = nerv.ParamRepo() - end - - local function ap(str) - return self.id .. '.' .. str - end - - local layers = { - ["nerv.CombinerLayer"] = { - [ap("inputXDup")] = {{}, {["dim_in"] = {self.dim_in[1]}, - ["dim_out"] = {self.dim_in[1], self.dim_in[1], self.dim_in[1], self.dim_in[1]}, ["lambda"] = {1}}}, - [ap("inputHDup")] = {{}, {["dim_in"] = {self.dim_in[2]}, - ["dim_out"] = {self.dim_in[2], self.dim_in[2], self.dim_in[2], self.dim_in[2]}, ["lambda"] = {1}}}, - [ap("inputCDup")] = {{}, {["dim_in"] = {self.dim_in[3]}, - ["dim_out"] = {self.dim_in[3], self.dim_in[3], self.dim_in[3]}, ["lambda"] = {1}}}, - [ap("mainCDup")] = {{}, {["dim_in"] = {self.dim_in[3], self.dim_in[3]}, ["dim_out"] = {self.dim_in[3], self.dim_in[3], self.dim_in[3]}, - ["lambda"] = {1, 1}}}, - }, - ["nerv.AffineLayer"] = { - [ap("mainAffineL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2]}, - ["dim_out"] = {self.dim_out[1]}, ["pr"] = pr}}, - }, - ["nerv.TanhLayer"] = { - [ap("mainTanhL")] = {{}, {["dim_in"] = {self.dim_out[1]}, ["dim_out"] = {self.dim_out[1]}}}, - [ap("outputTanhL")] = {{}, {["dim_in"] = {self.dim_out[1]}, ["dim_out"] = {self.dim_out[1]}}}, - }, - ["nerv.GateFLayer"] = { - [ap("forgetGateL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2], self.dim_in[3]}, - ["dim_out"] = {self.dim_in[3]}, ["pr"] = pr}}, - [ap("inputGateL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2], self.dim_in[3]}, - ["dim_out"] = {self.dim_in[3]}, ["pr"] = pr}}, - [ap("outputGateL")] = {{}, {["dim_in"] = {self.dim_in[1], self.dim_in[2], self.dim_in[3]}, - ["dim_out"] = {self.dim_in[3]}, ["pr"] = pr}}, - - }, - ["nerv.ElemMulLayer"] = { - [ap("inputGMulL")] = {{}, {["dim_in"] = {self.dim_in[3], self.dim_in[3]}, ["dim_out"] = {self.dim_in[3]}}}, - [ap("forgetGMulL")] = {{}, {["dim_in"] = {self.dim_in[3], self.dim_in[3]}, ["dim_out"] = {self.dim_in[3]}}}, - [ap("outputGMulL")] = {{}, {["dim_in"] = {self.dim_in[3], self.dim_in[3]}, ["dim_out"] = {self.dim_in[3]}}}, - }, - } - - local layerRepo = nerv.LayerRepo(layers, pr, global_conf) - - local connections_t = { - ["[1]"] = ap("inputXDup[1]"), - ["[2]"] = ap("inputHDup[1]"), - ["[3]"] = ap("inputCDup[1]"), - - [ap("inputXDup[1]")] = ap("mainAffineL[1]"), - [ap("inputHDup[1]")] = ap("mainAffineL[2]"), - [ap("mainAffineL[1]")] = ap("mainTanhL[1]"), - - [ap("inputXDup[2]")] = ap("inputGateL[1]"), - [ap("inputHDup[2]")] = ap("inputGateL[2]"), - [ap("inputCDup[1]")] = ap("inputGateL[3]"), - - [ap("inputXDup[3]")] = ap("forgetGateL[1]"), - [ap("inputHDup[3]")] = ap("forgetGateL[2]"), - [ap("inputCDup[2]")] = ap("forgetGateL[3]"), - - [ap("mainTanhL[1]")] = ap("inputGMulL[1]"), - [ap("inputGateL[1]")] = ap("inputGMulL[2]"), - - [ap("inputCDup[3]")] = ap("forgetGMulL[1]"), - [ap("forgetGateL[1]")] = ap("forgetGMulL[2]"), - - [ap("inputGMulL[1]")] = ap("mainCDup[1]"), - [ap("forgetGMulL[1]")] = ap("mainCDup[2]"), - - [ap("inputXDup[4]")] = ap("outputGateL[1]"), - [ap("inputHDup[4]")] = ap("outputGateL[2]"), - [ap("mainCDup[3]")] = ap("outputGateL[3]"), - - [ap("mainCDup[2]")] = "[2]", - [ap("mainCDup[1]")] = ap("outputTanhL[1]"), - - [ap("outputTanhL[1]")] = ap("outputGMulL[1]"), - [ap("outputGateL[1]")] = ap("outputGMulL[2]"), - - [ap("outputGMulL[1]")] = "[1]", - } - self.dagL = nerv.DAGLayerT(self.id, global_conf, - {["dim_in"] = self.dim_in, ["dim_out"] = self.dim_out, ["sub_layers"] = layerRepo, - ["connections"] = connections_t}) - - self:check_dim_len(3, 2) -- x, h, c and h, c -end - -function LSTMLayerT:init(batch_size, chunk_size) - self.dagL:init(batch_size, chunk_size) -end - -function LSTMLayerT:batch_resize(batch_size, chunk_size) - self.dagL:batch_resize(batch_size, chunk_size) -end - -function LSTMLayerT:update(bp_err, input, output, t) - self.dagL:update(bp_err, input, output, t) -end - -function LSTMLayerT:propagate(input, output, t) - self.dagL:propagate(input, output, t) -end - -function LSTMLayerT:back_propagate(bp_err, next_bp_err, input, output, t) - self.dagL:back_propagate(bp_err, next_bp_err, input, output, t) -end - -function LSTMLayerT:get_params() - return self.dagL:get_params() -end diff --git a/nerv/tnn/layersT/softmax_ce_t.lua b/nerv/tnn/layersT/softmax_ce_t.lua deleted file mode 100644 index a9ce975..0000000 --- a/nerv/tnn/layersT/softmax_ce_t.lua +++ /dev/null @@ -1,93 +0,0 @@ -local SoftmaxCELayer = nerv.class("nerv.SoftmaxCELayerT", "nerv.LayerT") - -function SoftmaxCELayer:__init(id, global_conf, layer_conf) - self.id = id - self.gconf = global_conf - self.dim_in = layer_conf.dim_in - self.dim_out = layer_conf.dim_out - self.compressed = layer_conf.compressed - if self.compressed == nil then - self.compressed = false - end - self:check_dim_len(2, -1) -- two inputs: nn output and label -end - -function SoftmaxCELayer:init(batch_size, chunk_size) - if not self.compressed and (self.dim_in[1] ~= self.dim_in[2]) then - nerv.error("mismatching dimensions of previous network output and labels") - end - if chunk_size == nil then - chunk_size = 1 - end - self.total_ce = 0.0 - self.total_correct = 0 - self.total_frames = 0 - self.softmax_t = {} - self.ce_t = {} - for t = 1, chunk_size do - self.softmax_t[t] = self.gconf.cumat_type(batch_size, self.dim_in[1]) - self.ce_t[t] = self.gconf.cumat_type(batch_size, self.dim_in[1]) - end -end - -function SoftmaxCELayer:batch_resize(batch_size, chunk_size) - if chunk_size == nil then - chunk_size = 1 - end - for t = 1, chunk_size do - if self.softmax_t[t]:nrow() ~= batch_size then - self.softmax_t[t] = self.gconf.cumat_type(batch_size, self.dim_in[1]) - self.ce_t[t] = self.gconf.cumat_type(batch_size, self.dim_in[1]) - end - end -end - -function SoftmaxCELayer:update(bp_err, input, output, t) - -- no params, therefore do nothing -end - -function SoftmaxCELayer:propagate(input, output, t) - if t == nil then - t = 1 - end - local softmax = self.softmax_t[t] - local ce = self.ce_t[t] - local classified = softmax:softmax(input[1]) - local label = input[2] - ce:log_elem(softmax) - if self.compressed then - label = label:decompress(input[1]:ncol()) - end - ce:mul_elem(ce, label) - ce = ce:rowsum() - if output[1] ~= nil then - output[1]:copy_fromd(ce) - end - -- add total ce - self.total_ce = self.total_ce - ce:colsum()[0][0] - self.total_frames = self.total_frames + softmax:nrow() - -- TODO: add colsame for uncompressed label - if self.compressed then - self.total_correct = self.total_correct + classified:colsame(input[2])[0][0] - end -end - -function SoftmaxCELayer:back_propagate(bp_err, next_bp_err, input, output, t) - -- softmax output - label - if t == nil then - t = 1 - end - local label = input[2] - if self.compressed then - label = label:decompress(input[1]:ncol()) - end - local nbe = next_bp_err[1] - nbe:add(self.softmax_t[t], label, 1.0, -1.0) - if bp_err[1] ~= nil then - nbe:scale_rows_by_col(bp_err[1]) - end -end - -function SoftmaxCELayer:get_params() - return nerv.ParamRepo({}) -end -- cgit v1.2.3-70-g09d2