From 0bb9cd4271f127c311fd9839855def8f9ea91dab Mon Sep 17 00:00:00 2001
From: Determinant <ted.sybil@gmail.com>
Date: Sat, 6 Jun 2015 11:02:48 +0800
Subject: add ASR DNN trainer

---
 examples/asr_trainer.lua   |  87 ++++++++++++++++++++++++
 examples/swb_baseline.lua  | 163 +++++++++++++++++++++++++++++++++++++++++++++
 io/chunk_file.c            |  14 ++--
 matrix/generic/elem_type.h |   3 +
 matrix/generic/mmatrix.c   |   2 +-
 nerv.lua                   |   6 +-
 6 files changed, 266 insertions(+), 9 deletions(-)
 create mode 100644 examples/asr_trainer.lua
 create mode 100644 examples/swb_baseline.lua

diff --git a/examples/asr_trainer.lua b/examples/asr_trainer.lua
new file mode 100644
index 0000000..b43a547
--- /dev/null
+++ b/examples/asr_trainer.lua
@@ -0,0 +1,87 @@
+function build_trainer(ifname)
+    local param_repo = make_param_repo(ifname)
+    local sublayer_repo = make_sublayer_repo(param_repo)
+    local layer_repo = make_layer_repo(sublayer_repo, param_repo)
+    local crit = get_criterion_layer(sublayer_repo)
+    local network = get_network(layer_repo)
+    local iterative_trainer = function (ofname, scp_file, bp)
+        gconf.randomize = bp
+        -- build buffer
+        local buffer = make_buffer(make_reader(scp_file, layer_repo))
+        -- initialize the network
+        network:init(gconf.batch_size)
+        gconf.cnt = 0
+        for data in buffer.get_data, buffer do
+            -- prine stat periodically
+            gconf.cnt = gconf.cnt + 1
+            if gconf.cnt == 1000 then
+                print_stat(crit)
+                gconf.cnt = 0
+            end
+            if gconf.cnt == 100 then break end
+
+            input = {data.main_scp, data.phone_state}
+            output = {}
+            err_input = {}
+            err_output = {input[1]:create()}
+            network:propagate(input, output)
+            if bp then
+                network:back_propagate(err_output, err_input, input, output)
+                network:update(err_input, input, output)
+            end
+            -- collect garbage in-time to save GPU memory
+            collectgarbage("collect")
+        end
+        print_stat(crit)
+        if bp then
+            nerv.info("writing back...")
+            cf = nerv.ChunkFile(ofname, "w")
+            for i, p in ipairs(network:get_params()) do
+                cf:write_chunk(p)
+            end
+            cf:close()
+        end
+        return get_accuracy(crit)
+    end
+    return iterative_trainer
+end
+
+dofile(arg[1])
+start_halving_inc = 0.5
+halving_factor = 0.6
+end_halving_inc = 0.1
+min_iter = 1
+max_iter = 20
+min_halving = 6
+gconf.batch_size = 256
+gconf.buffer_size = 81920
+
+local pf0 = gconf.initialized_param
+local trainer = build_trainer(pf0)
+--local trainer = build_trainer("c3.nerv")
+local accu_best = trainer(nil, gconf.cv_scp, false)
+local do_halving = false
+
+nerv.info("initial cross validation: %.3f", accu_best)
+for i = 1, max_iter do
+    nerv.info("iteration %d with lrate = %.6f", i, gconf.lrate)
+    local accu_tr = trainer(pf0 .. "_iter" .. i .. ".nerv", gconf.tr_scp, true)
+    nerv.info("[TR] training set %d: %.3f", i, accu_tr)
+    local accu_new = trainer(nil, gconf.cv_scp, false)
+    nerv.info("[CV] cross validation %d: %.3f", i, accu_new)
+    -- TODO: revert the weights
+    local accu_diff = accu_new - accu_best
+    if do_halving and accu_diff < end_halving_inc and i > min_iter then
+        break
+    end
+    if accu_diff < start_halving_inc and i >= min_halving then
+        do_halving = true
+    end
+    if do_halving then
+        gconf.lrate = gconf.lrate * halving_factor
+    end
+    if accu_new > accu_best then
+        accu_best = accu_new
+    end
+end
+nerv.Matrix.print_profile()
diff --git a/examples/swb_baseline.lua b/examples/swb_baseline.lua
new file mode 100644
index 0000000..f536777
--- /dev/null
+++ b/examples/swb_baseline.lua
@@ -0,0 +1,163 @@
+require 'speech.init'
+gconf = {lrate = 0.8, wcost = 1e-6, momentum = 0.9,
+        cumat_type = nerv.CuMatrixFloat,
+        mmat_type = nerv.MMatrixFloat,
+        frm_ext = 5,
+        tr_scp = "/slfs1/users/mfy43/swb_ivec/train_bp.scp",
+        cv_scp = "/slfs1/users/mfy43/swb_ivec/train_cv.scp",
+        htk_conf = "/slfs1/users/mfy43/swb_ivec/plp_0_d_a.conf",
+        global_transf = "global_transf.nerv",
+        initialized_param = "converted.nerv",
+        debug = false}
+
+function make_param_repo(param_file)
+    return nerv.ParamRepo({param_file, gconf.global_transf})
+end
+
+function make_sublayer_repo(param_repo)
+    return nerv.LayerRepo(
+    {
+        -- global transf
+        ["nerv.BiasLayer"] =
+        {
+            blayer1 = {{bias = "bias1"}, {dim_in = {429}, dim_out = {429}}},
+            blayer2 = {{bias = "bias2"}, {dim_in = {429}, dim_out = {429}}}
+        },
+        ["nerv.WindowLayer"] =
+        {
+            wlayer1 = {{window = "window1"}, {dim_in = {429}, dim_out = {429}}},
+            wlayer2 = {{window = "window2"}, {dim_in = {429}, dim_out = {429}}}
+        },
+        -- biased linearity
+        ["nerv.AffineLayer"] =
+        {
+            affine0 = {{ltp = "affine0_ltp", bp = "affine0_bp"},
+            {dim_in = {429}, dim_out = {2048}}},
+            affine1 = {{ltp = "affine1_ltp", bp = "affine1_bp"},
+            {dim_in = {2048}, dim_out = {2048}}},
+            affine2 = {{ltp = "affine2_ltp", bp = "affine2_bp"},
+            {dim_in = {2048}, dim_out = {2048}}},
+            affine3 = {{ltp = "affine3_ltp", bp = "affine3_bp"},
+            {dim_in = {2048}, dim_out = {2048}}},
+            affine4 = {{ltp = "affine4_ltp", bp = "affine4_bp"},
+            {dim_in = {2048}, dim_out = {2048}}},
+            affine5 = {{ltp = "affine5_ltp", bp = "affine5_bp"},
+            {dim_in = {2048}, dim_out = {2048}}},
+            affine6 = {{ltp = "affine6_ltp", bp = "affine6_bp"},
+            {dim_in = {2048}, dim_out = {2048}}},
+            affine7 = {{ltp = "affine7_ltp", bp = "affine7_bp"},
+            {dim_in = {2048}, dim_out = {3001}}}
+        },
+        ["nerv.SigmoidLayer"] =
+        {
+            sigmoid0 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+            sigmoid1 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+            sigmoid2 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+            sigmoid3 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+            sigmoid4 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+            sigmoid5 = {{}, {dim_in = {2048}, dim_out = {2048}}},
+            sigmoid6 = {{}, {dim_in = {2048}, dim_out = {2048}}}
+        },
+        ["nerv.SoftmaxCELayer"] =
+        {
+            criterion = {{}, {dim_in = {3001, 1}, dim_out = {}, compressed = true}}
+        }
+    }, param_repo, gconf)
+end
+
+function make_layer_repo(sublayer_repo, param_repo)
+    return nerv.LayerRepo(
+    {
+        ["nerv.DAGLayer"] =
+        {
+            global_transf = {{}, {
+                dim_in = {429}, dim_out = {429},
+                sub_layers = sublayer_repo,
+                connections = {
+                    ["<input>[1]"] = "blayer1[1]",
+                    ["blayer1[1]"] = "wlayer1[1]",
+                    ["wlayer1[1]"] = "blayer2[1]",
+                    ["blayer2[1]"] = "wlayer2[1]",
+                    ["wlayer2[1]"] = "<output>[1]"
+                }
+            }},
+            main = {{}, {
+                dim_in = {429, 1}, dim_out = {},
+                sub_layers = sublayer_repo,
+                connections = {
+                    ["<input>[1]"] = "affine0[1]",
+                    ["affine0[1]"] = "sigmoid0[1]",
+                    ["sigmoid0[1]"] = "affine1[1]",
+                    ["affine1[1]"] = "sigmoid1[1]",
+                    ["sigmoid1[1]"] = "affine2[1]",
+                    ["affine2[1]"] = "sigmoid2[1]",
+                    ["sigmoid2[1]"] = "affine3[1]",
+                    ["affine3[1]"] = "sigmoid3[1]",
+                    ["sigmoid3[1]"] = "affine4[1]",
+                    ["affine4[1]"] = "sigmoid4[1]",
+                    ["sigmoid4[1]"] = "affine5[1]",
+                    ["affine5[1]"] = "sigmoid5[1]",
+                    ["sigmoid5[1]"] = "affine6[1]",
+                    ["affine6[1]"] = "sigmoid6[1]",
+                    ["sigmoid6[1]"] = "affine7[1]",
+                    ["affine7[1]"] = "criterion[1]",
+                    ["<input>[2]"] = "criterion[2]"
+                }
+            }}
+        }
+    }, param_repo, gconf)
+end
+
+function get_criterion_layer(sublayer_repo)
+    return sublayer_repo:get_layer("criterion")
+end
+
+function get_network(layer_repo)
+    return layer_repo:get_layer("main")
+end
+
+function make_reader(scp_file, layer_repo)
+    return nerv.TNetReader(gconf,
+        {
+            id = "main_scp",
+            scp_file = scp_file,
+            conf_file = gconf.htk_conf,
+            frm_ext = gconf.frm_ext,
+            mlfs = {
+                phone_state = {
+                    file = "/slfs1/users/mfy43/swb_ivec/ref.mlf",
+                    format = "map",
+                    format_arg = "/slfs1/users/mfy43/swb_ivec/dict",
+                    dir = "*/",
+                    ext = "lab"
+                }
+            },
+            global_transf = layer_repo:get_layer("global_transf")
+        })
+end
+
+function make_buffer(reader, buffer)
+    return nerv.SGDBuffer(gconf,
+        {
+            buffer_size = gconf.buffer_size,
+            randomize = gconf.randomize,
+            readers = {
+                { reader = reader,
+                  data = {main_scp = 429, phone_state = 1}}
+            }
+        })
+end
+
+function get_accuracy(crit)
+    return crit.total_correct / crit.total_frames * 100
+end
+
+function print_stat(crit)
+    nerv.info("*** training stat begin ***")
+    nerv.utils.printf("cross entropy:\t%.8f\n", crit.total_ce)
+    nerv.utils.printf("correct:\t%d\n", crit.total_correct)
+    nerv.utils.printf("frames:\t%d\n", crit.total_frames)
+    nerv.utils.printf("err/frm:\t%.8f\n", crit.total_ce / crit.total_frames)
+    nerv.utils.printf("accuracy:\t%.3f%%\n", get_accuracy(crit))
+    nerv.info("*** training stat end ***")
+end
diff --git a/io/chunk_file.c b/io/chunk_file.c
index aa7dd1c..c0b6b9f 100644
--- a/io/chunk_file.c
+++ b/io/chunk_file.c
@@ -44,7 +44,7 @@ size_t read_chunk_header_plain(FILE *fp, int *status) {
     for (i = 0; i < PARAM_HEADER_SIZE; i++)
         if (isdigit(buff[i]))
             size = size * 10 + buff[i] - '0';
-    fprintf(stderr, "header: %lu\n", size);
+/*    fprintf(stderr, "header: %lu\n", size); */
     return size;
 }
 
@@ -91,7 +91,7 @@ const char *read_chunk_metadata(lua_State *L, FILE *fp, const char *fn) {
 #define LINEBUFF_SIZE 1024
     static char buff[7 + LINEBUFF_SIZE] = "return ";
     CHECK_FORMAT(fgets(buff + 7, LINEBUFF_SIZE, fp), buff + 7, fn);
-    fprintf(stderr, "metadata: %s\n", buff);
+    /* fprintf(stderr, "metadata: %s\n", buff); */
     return buff;
 }
 
@@ -104,7 +104,7 @@ void write_chunk_metadata(FILE *fp, const char *metadata_str, int *status) {
         *status = WRITE_ERROR;
         return;
     }
-    fprintf(stderr, "metadata: %s\n", metadata_str);
+    /* fprintf(stderr, "metadata: %s\n", metadata_str); */
 }
 
 
@@ -132,11 +132,11 @@ int nerv_chunk_file_open_read(lua_State *L, const char *fn) {
     if (!fp) nerv_error(L, "Error while opening chunk file: %s", fn);
     offset = ftello(fp);
     lua_newtable(L);
-    fprintf(stderr, "%d\n", (int)offset);
+    /* fprintf(stderr, "%d\n", (int)offset); */
     for (i = 0;; offset += chunk_len, i++)
     {
         ChunkInfo *pci;
-        fprintf(stderr, "reading chunk %d from %d\n", i, (int)offset);
+        /* fprintf(stderr, "reading chunk %d from %d\n", i, (int)offset); */
         /* skip to the begining of chunk i */
         CHECK_FORMAT(fseeko(fp, offset, SEEK_SET), 0, fn);
         /* read header */
@@ -153,8 +153,8 @@ int nerv_chunk_file_open_read(lua_State *L, const char *fn) {
         pci = (ChunkInfo *)malloc(sizeof(ChunkInfo));
         pci->offset = ftello(fp);
         pci->length = chunk_len - (pci->offset - offset);
-        fprintf(stderr, "%d + %d (skip %lu)\n", (int)pci->offset,
-                (int)pci->length, chunk_len);
+        /* fprintf(stderr, "%d + %d (skip %lu)\n", (int)pci->offset,
+                (int)pci->length, chunk_len); */
         luaT_pushudata(L, pci, nerv_chunk_info_tname);
         lua_setfield(L, -2, "chunk");
         /* stack: obj_table, metadata */
diff --git a/matrix/generic/elem_type.h b/matrix/generic/elem_type.h
index 2a6ffa8..bffe940 100644
--- a/matrix/generic/elem_type.h
+++ b/matrix/generic/elem_type.h
@@ -2,18 +2,21 @@
 
 #define MATRIX_ELEM float
 #define MATRIX_ELEM_FMT "%f"
+#define MATRIX_ELEM_WRITE_FMT "%.8f"
 #define MATRIX_ELEM_PTR(self) ((self)->data.f)
 
 #elif defined(MATRIX_USE_DOUBLE)
 
 #define MATRIX_ELEM double
 #define MATRIX_ELEM_FMT "%lf"
+#define MATRIX_ELEM_WRITE_FMT "%.8lf"
 #define MATRIX_ELEM_PTR(self) ((self)->data.d)
 
 #elif defined(MATRIX_USE_INT)
 
 #define MATRIX_ELEM long
 #define MATRIX_ELEM_FMT "%ld"
+#define MATRIX_ELEM_WRITE_FMT "%ld"
 #define MATRIX_ELEM_PTR(self) ((self)->data.i)
 
 #endif
diff --git a/matrix/generic/mmatrix.c b/matrix/generic/mmatrix.c
index 75d1eb1..2045d65 100644
--- a/matrix/generic/mmatrix.c
+++ b/matrix/generic/mmatrix.c
@@ -86,7 +86,7 @@ int nerv_matrix_(save)(lua_State *L) {
     {
         MATRIX_ELEM *row = MATRIX_ROW_PTR(self, i);
         for (j = 0; j < ncol; j++)
-            if (fprintf(fp, MATRIX_ELEM_FMT " ", row[j]) < 0)
+            if (fprintf(fp, MATRIX_ELEM_WRITE_FMT " ", row[j]) < 0)
             {
                 free(self);
                 return 0;
diff --git a/nerv.lua b/nerv.lua
index cb53f29..ce6bc44 100644
--- a/nerv.lua
+++ b/nerv.lua
@@ -2,13 +2,17 @@ require 'libnerv'
 nerv.utils = require 'pl.utils'
 
 function nerv.error(fmt, ...)
-    error(nerv.utils.printf("Nerv internal error: " .. fmt .. "\n", ...))
+    error(nerv.utils.printf("[nerv] internal error: " .. fmt .. "\n", ...))
 end
 
 function nerv.error_method_not_implemented()
     nerv.error("method not implemented");
 end
 
+function nerv.info(fmt, ...)
+    nerv.utils.printf("[nerv] info: " .. fmt .. "\n", ...)
+end
+
 -- Torch C API wrapper
 function nerv.class(tname, parenttname)
 
-- 
cgit v1.2.3-70-g09d2