From 0214279d97c4146d9d4d6fe23cc3209924937f35 Mon Sep 17 00:00:00 2001 From: cloudygoose Date: Wed, 10 Jun 2015 17:04:31 +0800 Subject: doc change(layer) --- doc/nerv_layer.md | 128 +++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 127 insertions(+), 1 deletion(-) diff --git a/doc/nerv_layer.md b/doc/nerv_layer.md index b417729..0425d5f 100644 --- a/doc/nerv_layer.md +++ b/doc/nerv_layer.md @@ -9,7 +9,7 @@ __nerv.Layer__ is the base class and most of its methods are abstract. * `table dim_out` It specifies the dimensions of the outputs. * `string id` ID of this layer. * `table gconf` Stores the `global_conf`. -* __nerv.AffineLayer__ inherits __nerv.Layer__, both `#dim_in` and `#dim_out` are 1. +* __nerv.AffineLayer__ inherits __nerv.Layer__, both `#dim_in` and `#dim_out` are 1. * `MatrixParam ltp` The liner transform parameter. * `BiasParam bp` The bias parameter. * __nerv.BiasLayer__ inherits __nerv.Layer__, both `#dim_in` nad `#dim_out` are 1. @@ -43,3 +43,129 @@ Check whether `#self.dim_in == len_in` and `#self.dim_out == len_out`, if violat Abstract method. The layer should return a list containing its parameters. +##Examples## +* a basic example using __Nerv__ layers to a linear classification. + +``` +require 'math' + +require 'layer.affine' +require 'layer.softmax_ce' + +--[[Example using layers, a simple two-classification problem]]-- + +function calculate_accurate(networkO, labelM) + sum = 0 + for i = 0, networkO:nrow() - 1, 1 do + if (labelM[i][0] == 1 and networkO[i][0] >= 0.5) then + sum = sum + 1 + end + if (labelM[i][1] == 1 and networkO[i][1] >= 0.5) then + sum = sum + 1 + end + end + return sum +end + +--[[begin global setting and data generation]]-- +global_conf = {lrate = 10, + wcost = 1e-6, + momentum = 0.9, + cumat_type = nerv.CuMatrixFloat} + +input_dim = 5 +data_num = 100 +ansV = nerv.CuMatrixFloat(input_dim, 1) +for i = 0, input_dim - 1, 1 do + ansV[i][0] = math.random() - 0.5 +end +ansB = math.random() - 0.5 +print('displaying ansV') +print(ansV) +print('displaying ansB(bias)') +print(ansB) + +dataM = nerv.CuMatrixFloat(data_num, input_dim) +for i = 0, data_num - 1, 1 do + for j = 0, input_dim - 1, 1 do + dataM[i][j] = math.random() * 2 - 1 + end +end +refM = nerv.CuMatrixFloat(data_num, 1) +refM:fill(ansB) +refM:mul(dataM, ansV, 1, 1) --refM = dataM * ansV + ansB + +labelM = nerv.CuMatrixFloat(data_num, 2) +for i = 0, data_num - 1, 1 do + if (refM[i][0] > 0) then + labelM[i][0] = 1 + labelM[i][1] = 0 + else + labelM[i][0] = 0 + labelM[i][1] = 1 + end +end +--[[global setting and data generation end]]-- + + +--[[begin network building]]-- +--parameters +affineL_ltp = nerv.LinearTransParam('AffineL_ltp', global_conf) +affineL_ltp.trans = nerv.CuMatrixFloat(input_dim, 2) +for i = 0, input_dim - 1, 1 do + for j = 0, 1, 1 do + affineL_ltp.trans[i][j] = math.random() - 0.5 + end +end +affineL_bp = nerv.BiasParam('AffineL_bp', global_conf) +affineL_bp.trans = nerv.CuMatrixFloat(1, 2) +for j = 0, 1, 1 do + affineL_bp.trans[j] = math.random() - 0.5 +end + +--layers +affineL = nerv.AffineLayer('AffineL', global_conf, {['ltp'] = affineL_ltp, + ['bp'] = affineL_bp, + dim_in = {input_dim}, + dim_out = {2}}) +softmaxL = nerv.SoftmaxCELayer('softmaxL', global_conf, {dim_in = {2, 2}, + dim_out = {}}) +print('layers initializing...') +affineL:init() +softmaxL:init() +--[[network building end]]-- + + +--[[begin space allocation]]-- +print('network input&output&error space allocation...') +affineI = {dataM} --input to the network is data +affineO = {nerv.CuMatrixFloat(data_num, 2)} +softmaxI = {affineO[1], labelM} +softmaxO = {nerv.CuMatrixFloat(data_num, 2)} + +affineE = {nerv.CuMatrixFloat(data_num, 2)} +--[[space allocation end]]-- + + +--[[begin training]]-- +ce_last = 0 +for l = 0, 10, 1 do + affineL:propagate(affineI, affineO) + softmaxL:propagate(softmaxI, softmaxO) + softmaxO[1]:softmax(softmaxI[1]) + + softmaxL:back_propagate(affineE, nil, softmaxI, softmaxO) + + affineL:update(affineE, affineI, affineO) + + if (l % 5 == 0) then + nerv.utils.printf("training iteration %d finished\n", l) + nerv.utils.printf("cross entropy: %.8f\n", softmaxL.total_ce - ce_last) + ce_last = softmaxL.total_ce + nerv.utils.printf("accurate labels: %d\n", calculate_accurate(softmaxO[1], labelM)) + nerv.utils.printf("total frames processed: %.8f\n", softmaxL.total_frames) + end +end +--[[end training]]-- + +``` \ No newline at end of file -- cgit v1.2.3