diff options
Diffstat (limited to 'nerv/tnn/layersT/dropout_t.lua')
-rw-r--r-- | nerv/tnn/layersT/dropout_t.lua | 71 |
1 files changed, 0 insertions, 71 deletions
diff --git a/nerv/tnn/layersT/dropout_t.lua b/nerv/tnn/layersT/dropout_t.lua deleted file mode 100644 index 4351285..0000000 --- a/nerv/tnn/layersT/dropout_t.lua +++ /dev/null @@ -1,71 +0,0 @@ -local Dropout = nerv.class("nerv.DropoutLayerT", "nerv.LayerT") - -function Dropout:__init(id, global_conf, layer_conf) - self.id = id - self.gconf = global_conf - self.dim_in = layer_conf.dim_in - self.dim_out = layer_conf.dim_out - self:check_dim_len(1, 1) -- two inputs: nn output and label -end - -function Dropout:init(batch_size, chunk_size) - if self.dim_in[1] ~= self.dim_out[1] then - nerv.error("mismatching dimensions of input and output") - end - if chunk_size == nil then - chunk_size = 1 - end - self.mask_t = {} - for t = 1, chunk_size do - self.mask_t[t] = self.gconf.cumat_type(batch_size, self.dim_in[1]) - end -end - -function Dropout:batch_resize(batch_size, chunk_size) - if chunk_size == nil then - chunk_size = 1 - end - for t = 1, chunk_size do - if self.mask_t[t] == nil or self.mask_t[t]:nrow() ~= batch_size then - self.mask_t[t] = self.gconf.cumat_type(batch_size, self.dim_in[1]) - end - end -end - -function Dropout:propagate(input, output, t) - if t == nil then - t = 1 - end - if self.gconf.dropout_rate == nil then - nerv.info("DropoutLayerT:propagate warning, global_conf.dropout_rate is nil, setting it zero") - self.gconf.dropout_rate = 0 - end - - if self.gconf.dropout_rate == 0 then - output[1]:copy_fromd(input[1]) - else - self.mask_t[t]:rand_uniform() - --since we will lose a portion of the actvations, we multiply the activations by 1/(1-dr) to compensate - self.mask_t[t]:thres_mask(self.mask_t[t], self.gconf.dropout_rate, 0, 1 / (1.0 - self.gconf.dropout_rate)) - output[1]:mul_elem(input[1], self.mask_t[t]) - end -end - -function Dropout:update(bp_err, input, output, t) - -- no params, therefore do nothing -end - -function Dropout:back_propagate(bp_err, next_bp_err, input, output, t) - if t == nil then - t = 1 - end - if self.gconf.dropout_rate == 0 then - next_bp_err[1]:copy_fromd(bp_err[1]) - else - next_bp_err[1]:mul_elem(bp_err[1], self.mask_t[t]) - end -end - -function Dropout:get_params() - return nerv.ParamRepo({}) -end |