require 'libkaldiseq' local MMILayer = nerv.class("nerv.MMILayer", "nerv.Layer") function MMILayer:__init(id, global_conf, layer_conf) self.id = id self.gconf = global_conf self.dim_in = layer_conf.dim_in self.dim_out = layer_conf.dim_out self.arg = layer_conf.cmd.arg self.mdl = layer_conf.cmd.mdl self.lat = layer_conf.cmd.lat self.ali = layer_conf.cmd.ali self:check_dim_len(2, -1) -- two inputs: nn output and utt key end function MMILayer:init(batch_size) self.total_frames = 0 self.kaldi_mmi = nerv.KaldiMMI(self.arg, self.mdl, self.lat, self.ali) if self.kaldi_mmi == nil then nerv.error("kaldi arguments is expected: %s %s %s %s", self.arg, self.mdl, self.lat, self.ali) end end function MMILayer:batch_resize(batch_size) -- do nothing end function MMILayer:update(bp_err, input, output) -- no params, therefore do nothing end function MMILayer:propagate(input, output) self.valid = false self.valid = self.kaldi_mmi:check(input[1], input[2]) return self.valid end function MMILayer:back_propagate(bp_err, next_bp_err, input, output) if self.valid ~= true then nerv.error("kaldi sequence training back_propagate fail") end local mmat = input[1]:new_to_host() next_bp_err[1]:copy_fromh(self.kaldi_mmi:calc_diff(mmat, input[2])) self.total_frames = self.total_frames + self.kaldi_mmi:get_num_frames() end function MMILayer:get_params() return nerv.ParamRepo({}) end