// matrix/kaldi-gpsr.h // Copyright 2012 Arnab Ghoshal // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_MATRIX_KALDI_GPSR_H_ #define KALDI_MATRIX_KALDI_GPSR_H_ #include #include #include "base/kaldi-common.h" #include "matrix/matrix-lib.h" #include "itf/options-itf.h" namespace kaldi { /// This is an implementation of the GPSR algorithm. See, Figueiredo, Nowak and /// Wright, "Gradient Projection for Sparse Reconstruction: Application to /// Compressed Sensing and Other Inverse Problems," IEEE Journal of Selected /// Topics in Signal Processing, vol. 1, no. 4, pp. 586-597, 2007. /// http://dx.doi.org/10.1109/JSTSP.2007.910281 /// The GPSR algorithm, described in Figueiredo, et al., 2007, solves: /// \f[ \min_x 0.5 * ||y - Ax||_2^2 + \tau ||x||_1, \f] /// where \f$ x \in R^n, y \in R^k \f$, and \f$ A \in R^{n \times k} \f$. /// In this implementation, we solve: /// \f[ \min_x 0.5 * x^T H x - g^T x + \tau ||x||_1, \f] /// which is the more natural form in which such problems arise in our case. /// Here, \f$ H = A^T A \in R^{n \times n} \f$ and \f$ g = A^T y \in R^n \f$. /** \struct GpsrConfig * Configuration variables needed in the GPSR algorithm. */ struct GpsrConfig { bool use_gpsr_bb; ///< Use the Barzilai-Borwein gradient projection method /// The following options are common to both the basic & Barzilai-Borwein /// versions of GPSR double stop_thresh; ///< Stopping threshold int32 max_iters; ///< Maximum number of iterations double gpsr_tau; ///< Regularization scale double alpha_min; ///< Minimum step size in the feasible direction double alpha_max; ///< Maximum step size in the feasible direction double max_sparsity; ///< Maximum percentage of dimensions set to 0 double tau_reduction; ///< Multiply tau by this if max_sparsity reached /// The following options are for the backtracking line search in basic GPSR. /// Step size reduction factor in backtracking line search. 0 < beta < 1 double gpsr_beta; /// Improvement factor in backtracking line search, i.e. the new objective /// function must be less than the old one by mu times the gradient in the /// direction of the change in x. 0 < mu < 1 double gpsr_mu; int32 max_iters_backtrak; ///< Max iterations for backtracking line search bool debias; ///< Do debiasing, i.e. unconstrained optimization at the end double stop_thresh_debias; ///< Stopping threshold for debiasing stage int32 max_iters_debias; ///< Maximum number of iterations for debiasing stage GpsrConfig() { use_gpsr_bb = true; stop_thresh = 0.005; max_iters = 100; gpsr_tau = 10; alpha_min = 1.0e-10; alpha_max = 1.0e+20; max_sparsity = 0.9; tau_reduction = 0.8; gpsr_beta = 0.5; gpsr_mu = 0.1; max_iters_backtrak = 50; debias = false; stop_thresh_debias = 0.001; max_iters_debias = 50; } void Register(OptionsItf *po); }; inline void GpsrConfig::Register(OptionsItf *po) { std::string module = "GpsrConfig: "; po->Register("use-gpsr-bb", &use_gpsr_bb, module+ "Use the Barzilai-Borwein gradient projection method."); po->Register("stop-thresh", &stop_thresh, module+ "Stopping threshold for GPSR."); po->Register("max-iters", &max_iters, module+ "Maximum number of iterations of GPSR."); po->Register("gpsr-tau", &gpsr_tau, module+ "Regularization scale for GPSR."); po->Register("alpha-min", &alpha_min, module+ "Minimum step size in feasible direction."); po->Register("alpha-max", &alpha_max, module+ "Maximum step size in feasible direction."); po->Register("max-sparsity", &max_sparsity, module+ "Maximum percentage of dimensions set to 0."); po->Register("tau-reduction", &tau_reduction, module+ "Multiply tau by this if maximum sparsity is reached."); po->Register("gpsr-beta", &gpsr_beta, module+ "Step size reduction factor in backtracking line search (0Register("gpsr-mu", &gpsr_mu, module+ "Improvement factor in backtracking line search (0Register("max-iters-backtrack", &max_iters_backtrak, module+ "Maximum number of iterations of backtracking line search."); po->Register("debias", &debias, module+ "Do final debiasing step."); po->Register("stop-thresh-debias", &stop_thresh_debias, module+ "Stopping threshold for debiaisng step."); po->Register("max-iters-debias", &max_iters_debias, module+ "Maximum number of iterations of debiasing."); } /// Solves a quadratic program in \f$ x \f$, with L_1 regularization: /// \f[ \min_x 0.5 * x^T H x - g^T x + \tau ||x||_1. \f] /// This is similar to SolveQuadraticProblem() in sp-matrix.h with an added /// L_1 term. template Real Gpsr(const GpsrConfig &opts, const SpMatrix &H, const Vector &g, Vector *x, const char *debug_str = "[unknown]") { if (opts.use_gpsr_bb) return GpsrBB(opts, H, g, x, debug_str); else return GpsrBasic(opts, H, g, x, debug_str); } /// This is the basic GPSR algorithm, where the step size is determined by a /// backtracking line search. The line search is called "Armijo rule along the /// projection arc" in Bertsekas, Nonlinear Programming, 2nd ed. page 230. template Real GpsrBasic(const GpsrConfig &opts, const SpMatrix &H, const Vector &g, Vector *x, const char *debug_str = "[unknown]"); /// This is the paper calls the Barzilai-Borwein variant. This is a constrained /// Netwon's method where the Hessian is approximated by scaled identity matrix template Real GpsrBB(const GpsrConfig &opts, const SpMatrix &H, const Vector &g, Vector *x, const char *debug_str = "[unknown]"); } // namespace kaldi #endif // KALDI_MATRIX_KALDI_GPSR_H_