// matrix/jama-eig.h // Copyright 2009-2011 Microsoft Corporation // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. // This file consists of a port and modification of materials from // JAMA: A Java Matrix Package // under the following notice: This software is a cooperative product of // The MathWorks and the National Institute of Standards and Technology (NIST) // which has been released to the public. This notice and the original code are // available at http://math.nist.gov/javanumerics/jama/domain.notice #ifndef KALDI_MATRIX_JAMA_EIG_H_ #define KALDI_MATRIX_JAMA_EIG_H_ 1 #include "matrix/kaldi-matrix.h" namespace kaldi { // This class is not to be used externally. See the Eig function in the Matrix // class in kaldi-matrix.h. This is the external interface. template class EigenvalueDecomposition { // This class is based on the EigenvalueDecomposition class from the JAMA // library (version 1.0.2). public: EigenvalueDecomposition(const MatrixBase &A); ~EigenvalueDecomposition(); // free memory. void GetV(MatrixBase *V_out) { // V is what we call P externally; it's the matrix of // eigenvectors. KALDI_ASSERT(V_out->NumRows() == static_cast(n_) && V_out->NumCols() == static_cast(n_)); for (int i = 0; i < n_; i++) for (int j = 0; j < n_; j++) (*V_out)(i, j) = V(i, j); // V(i, j) is member function. } void GetRealEigenvalues(VectorBase *r_out) { // returns real part of eigenvalues. KALDI_ASSERT(r_out->Dim() == static_cast(n_)); for (int i = 0; i < n_; i++) (*r_out)(i) = d_[i]; } void GetImagEigenvalues(VectorBase *i_out) { // returns imaginary part of eigenvalues. KALDI_ASSERT(i_out->Dim() == static_cast(n_)); for (int i = 0; i < n_; i++) (*i_out)(i) = e_[i]; } private: inline Real &H(int r, int c) { return H_[r*n_ + c]; } inline Real &V(int r, int c) { return V_[r*n_ + c]; } // complex division inline static void cdiv(Real xr, Real xi, Real yr, Real yi, Real *cdivr, Real *cdivi) { Real r, d; if (std::abs(yr) > std::abs(yi)) { r = yi/yr; d = yr + r*yi; *cdivr = (xr + r*xi)/d; *cdivi = (xi - r*xr)/d; } else { r = yr/yi; d = yi + r*yr; *cdivr = (r*xr + xi)/d; *cdivi = (r*xi - xr)/d; } } // Nonsymmetric reduction from Hessenberg to real Schur form. void Hqr2 (); int n_; // matrix dimension. Real *d_, *e_; // real and imaginary parts of eigenvalues. Real *V_; // the eigenvectors (P in our external notation) Real *H_; // the nonsymmetric Hessenberg form. Real *ort_; // working storage for nonsymmetric algorithm. // Symmetric Householder reduction to tridiagonal form. void Tred2 (); // Symmetric tridiagonal QL algorithm. void Tql2 (); // Nonsymmetric reduction to Hessenberg form. void Orthes (); }; template class EigenvalueDecomposition; // force instantiation. template class EigenvalueDecomposition; // force instantiation. template void EigenvalueDecomposition::Tred2() { // This is derived from the Algol procedures tred2 by // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. for (int j = 0; j < n_; j++) { d_[j] = V(n_-1, j); } // Householder reduction to tridiagonal form. for (int i = n_-1; i > 0; i--) { // Scale to avoid under/overflow. Real scale = 0.0; Real h = 0.0; for (int k = 0; k < i; k++) { scale = scale + std::abs(d_[k]); } if (scale == 0.0) { e_[i] = d_[i-1]; for (int j = 0; j < i; j++) { d_[j] = V(i-1, j); V(i, j) = 0.0; V(j, i) = 0.0; } } else { // Generate Householder vector. for (int k = 0; k < i; k++) { d_[k] /= scale; h += d_[k] * d_[k]; } Real f = d_[i-1]; Real g = std::sqrt(h); if (f > 0) { g = -g; } e_[i] = scale * g; h = h - f * g; d_[i-1] = f - g; for (int j = 0; j < i; j++) { e_[j] = 0.0; } // Apply similarity transformation to remaining columns. for (int j = 0; j < i; j++) { f = d_[j]; V(j, i) = f; g =e_[j] + V(j, j) * f; for (int k = j+1; k <= i-1; k++) { g += V(k, j) * d_[k]; e_[k] += V(k, j) * f; } e_[j] = g; } f = 0.0; for (int j = 0; j < i; j++) { e_[j] /= h; f += e_[j] * d_[j]; } Real hh = f / (h + h); for (int j = 0; j < i; j++) { e_[j] -= hh * d_[j]; } for (int j = 0; j < i; j++) { f = d_[j]; g = e_[j]; for (int k = j; k <= i-1; k++) { V(k, j) -= (f * e_[k] + g * d_[k]); } d_[j] = V(i-1, j); V(i, j) = 0.0; } } d_[i] = h; } // Accumulate transformations. for (int i = 0; i < n_-1; i++) { V(n_-1, i) = V(i, i); V(i, i) = 1.0; Real h = d_[i+1]; if (h != 0.0) { for (int k = 0; k <= i; k++) { d_[k] = V(k, i+1) / h; } for (int j = 0; j <= i; j++) { Real g = 0.0; for (int k = 0; k <= i; k++) { g += V(k, i+1) * V(k, j); } for (int k = 0; k <= i; k++) { V(k, j) -= g * d_[k]; } } } for (int k = 0; k <= i; k++) { V(k, i+1) = 0.0; } } for (int j = 0; j < n_; j++) { d_[j] = V(n_-1, j); V(n_-1, j) = 0.0; } V(n_-1, n_-1) = 1.0; e_[0] = 0.0; } template void EigenvalueDecomposition::Tql2() { // This is derived from the Algol procedures tql2, by // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. for (int i = 1; i < n_; i++) { e_[i-1] = e_[i]; } e_[n_-1] = 0.0; Real f = 0.0; Real tst1 = 0.0; Real eps = std::numeric_limits::epsilon(); for (int l = 0; l < n_; l++) { // Find small subdiagonal element tst1 = std::max(tst1, std::abs(d_[l]) + std::abs(e_[l])); int m = l; while (m < n_) { if (std::abs(e_[m]) <= eps*tst1) { break; } m++; } // If m == l, d_[l] is an eigenvalue, // otherwise, iterate. if (m > l) { int iter = 0; do { iter = iter + 1; // (Could check iteration count here.) // Compute implicit shift Real g = d_[l]; Real p = (d_[l+1] - g) / (2.0 *e_[l]); Real r = Hypot(p, static_cast(1.0)); // This is a Kaldi version of hypot that works with templates. if (p < 0) { r = -r; } d_[l] =e_[l] / (p + r); d_[l+1] =e_[l] * (p + r); Real dl1 = d_[l+1]; Real h = g - d_[l]; for (int i = l+2; i < n_; i++) { d_[i] -= h; } f = f + h; // Implicit QL transformation. p = d_[m]; Real c = 1.0; Real c2 = c; Real c3 = c; Real el1 =e_[l+1]; Real s = 0.0; Real s2 = 0.0; for (int i = m-1; i >= l; i--) { c3 = c2; c2 = c; s2 = s; g = c *e_[i]; h = c * p; r = Hypot(p, e_[i]); // This is a Kaldi version of Hypot that works with templates. e_[i+1] = s * r; s =e_[i] / r; c = p / r; p = c * d_[i] - s * g; d_[i+1] = h + s * (c * g + s * d_[i]); // Accumulate transformation. for (int k = 0; k < n_; k++) { h = V(k, i+1); V(k, i+1) = s * V(k, i) + c * h; V(k, i) = c * V(k, i) - s * h; } } p = -s * s2 * c3 * el1 *e_[l] / dl1; e_[l] = s * p; d_[l] = c * p; // Check for convergence. } while (std::abs(e_[l]) > eps*tst1); } d_[l] = d_[l] + f; e_[l] = 0.0; } // Sort eigenvalues and corresponding vectors. for (int i = 0; i < n_-1; i++) { int k = i; Real p = d_[i]; for (int j = i+1; j < n_; j++) { if (d_[j] < p) { k = j; p = d_[j]; } } if (k != i) { d_[k] = d_[i]; d_[i] = p; for (int j = 0; j < n_; j++) { p = V(j, i); V(j, i) = V(j, k); V(j, k) = p; } } } } template void EigenvalueDecomposition::Orthes() { // This is derived from the Algol procedures orthes and ortran, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutines in EISPACK. int low = 0; int high = n_-1; for (int m = low+1; m <= high-1; m++) { // Scale column. Real scale = 0.0; for (int i = m; i <= high; i++) { scale = scale + std::abs(H(i, m-1)); } if (scale != 0.0) { // Compute Householder transformation. Real h = 0.0; for (int i = high; i >= m; i--) { ort_[i] = H(i, m-1)/scale; h += ort_[i] * ort_[i]; } Real g = std::sqrt(h); if (ort_[m] > 0) { g = -g; } h = h - ort_[m] * g; ort_[m] = ort_[m] - g; // Apply Householder similarity transformation // H = (I-u*u'/h)*H*(I-u*u')/h) for (int j = m; j < n_; j++) { Real f = 0.0; for (int i = high; i >= m; i--) { f += ort_[i]*H(i, j); } f = f/h; for (int i = m; i <= high; i++) { H(i, j) -= f*ort_[i]; } } for (int i = 0; i <= high; i++) { Real f = 0.0; for (int j = high; j >= m; j--) { f += ort_[j]*H(i, j); } f = f/h; for (int j = m; j <= high; j++) { H(i, j) -= f*ort_[j]; } } ort_[m] = scale*ort_[m]; H(m, m-1) = scale*g; } } // Accumulate transformations (Algol's ortran). for (int i = 0; i < n_; i++) { for (int j = 0; j < n_; j++) { V(i, j) = (i == j ? 1.0 : 0.0); } } for (int m = high-1; m >= low+1; m--) { if (H(m, m-1) != 0.0) { for (int i = m+1; i <= high; i++) { ort_[i] = H(i, m-1); } for (int j = m; j <= high; j++) { Real g = 0.0; for (int i = m; i <= high; i++) { g += ort_[i] * V(i, j); } // Double division avoids possible underflow g = (g / ort_[m]) / H(m, m-1); for (int i = m; i <= high; i++) { V(i, j) += g * ort_[i]; } } } } } template void EigenvalueDecomposition::Hqr2() { // This is derived from the Algol procedure hqr2, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. int nn = n_; int n = nn-1; int low = 0; int high = nn-1; Real eps = std::numeric_limits::epsilon(); Real exshift = 0.0; Real p = 0, q = 0, r = 0, s = 0, z=0, t, w, x, y; // Store roots isolated by balanc and compute matrix norm Real norm = 0.0; for (int i = 0; i < nn; i++) { if (i < low || i > high) { d_[i] = H(i, i); e_[i] = 0.0; } for (int j = std::max(i-1, 0); j < nn; j++) { norm = norm + std::abs(H(i, j)); } } // Outer loop over eigenvalue index int iter = 0; while (n >= low) { // Look for single small sub-diagonal element int l = n; while (l > low) { s = std::abs(H(l-1, l-1)) + std::abs(H(l, l)); if (s == 0.0) { s = norm; } if (std::abs(H(l, l-1)) < eps * s) { break; } l--; } // Check for convergence // One root found if (l == n) { H(n, n) = H(n, n) + exshift; d_[n] = H(n, n); e_[n] = 0.0; n--; iter = 0; // Two roots found } else if (l == n-1) { w = H(n, n-1) * H(n-1, n); p = (H(n-1, n-1) - H(n, n)) / 2.0; q = p * p + w; z = std::sqrt(std::abs(q)); H(n, n) = H(n, n) + exshift; H(n-1, n-1) = H(n-1, n-1) + exshift; x = H(n, n); // Real pair if (q >= 0) { if (p >= 0) { z = p + z; } else { z = p - z; } d_[n-1] = x + z; d_[n] = d_[n-1]; if (z != 0.0) { d_[n] = x - w / z; } e_[n-1] = 0.0; e_[n] = 0.0; x = H(n, n-1); s = std::abs(x) + std::abs(z); p = x / s; q = z / s; r = std::sqrt(p * p+q * q); p = p / r; q = q / r; // Row modification for (int j = n-1; j < nn; j++) { z = H(n-1, j); H(n-1, j) = q * z + p * H(n, j); H(n, j) = q * H(n, j) - p * z; } // Column modification for (int i = 0; i <= n; i++) { z = H(i, n-1); H(i, n-1) = q * z + p * H(i, n); H(i, n) = q * H(i, n) - p * z; } // Accumulate transformations for (int i = low; i <= high; i++) { z = V(i, n-1); V(i, n-1) = q * z + p * V(i, n); V(i, n) = q * V(i, n) - p * z; } // Complex pair } else { d_[n-1] = x + p; d_[n] = x + p; e_[n-1] = z; e_[n] = -z; } n = n - 2; iter = 0; // No convergence yet } else { // Form shift x = H(n, n); y = 0.0; w = 0.0; if (l < n) { y = H(n-1, n-1); w = H(n, n-1) * H(n-1, n); } // Wilkinson's original ad hoc shift if (iter == 10) { exshift += x; for (int i = low; i <= n; i++) { H(i, i) -= x; } s = std::abs(H(n, n-1)) + std::abs(H(n-1, n-2)); x = y = 0.75 * s; w = -0.4375 * s * s; } // MATLAB's new ad hoc shift if (iter == 30) { s = (y - x) / 2.0; s = s * s + w; if (s > 0) { s = std::sqrt(s); if (y < x) { s = -s; } s = x - w / ((y - x) / 2.0 + s); for (int i = low; i <= n; i++) { H(i, i) -= s; } exshift += s; x = y = w = 0.964; } } iter = iter + 1; // (Could check iteration count here.) // Look for two consecutive small sub-diagonal elements int m = n-2; while (m >= l) { z = H(m, m); r = x - z; s = y - z; p = (r * s - w) / H(m+1, m) + H(m, m+1); q = H(m+1, m+1) - z - r - s; r = H(m+2, m+1); s = std::abs(p) + std::abs(q) + std::abs(r); p = p / s; q = q / s; r = r / s; if (m == l) { break; } if (std::abs(H(m, m-1)) * (std::abs(q) + std::abs(r)) < eps * (std::abs(p) * (std::abs(H(m-1, m-1)) + std::abs(z) + std::abs(H(m+1, m+1))))) { break; } m--; } for (int i = m+2; i <= n; i++) { H(i, i-2) = 0.0; if (i > m+2) { H(i, i-3) = 0.0; } } // Double QR step involving rows l:n and columns m:n for (int k = m; k <= n-1; k++) { bool notlast = (k != n-1); if (k != m) { p = H(k, k-1); q = H(k+1, k-1); r = (notlast ? H(k+2, k-1) : 0.0); x = std::abs(p) + std::abs(q) + std::abs(r); if (x != 0.0) { p = p / x; q = q / x; r = r / x; } } if (x == 0.0) { break; } s = std::sqrt(p * p + q * q + r * r); if (p < 0) { s = -s; } if (s != 0) { if (k != m) { H(k, k-1) = -s * x; } else if (l != m) { H(k, k-1) = -H(k, k-1); } p = p + s; x = p / s; y = q / s; z = r / s; q = q / p; r = r / p; // Row modification for (int j = k; j < nn; j++) { p = H(k, j) + q * H(k+1, j); if (notlast) { p = p + r * H(k+2, j); H(k+2, j) = H(k+2, j) - p * z; } H(k, j) = H(k, j) - p * x; H(k+1, j) = H(k+1, j) - p * y; } // Column modification for (int i = 0; i <= std::min(n, k+3); i++) { p = x * H(i, k) + y * H(i, k+1); if (notlast) { p = p + z * H(i, k+2); H(i, k+2) = H(i, k+2) - p * r; } H(i, k) = H(i, k) - p; H(i, k+1) = H(i, k+1) - p * q; } // Accumulate transformations for (int i = low; i <= high; i++) { p = x * V(i, k) + y * V(i, k+1); if (notlast) { p = p + z * V(i, k+2); V(i, k+2) = V(i, k+2) - p * r; } V(i, k) = V(i, k) - p; V(i, k+1) = V(i, k+1) - p * q; } } // (s != 0) } // k loop } // check convergence } // while (n >= low) // Backsubstitute to find vectors of upper triangular form if (norm == 0.0) { return; } for (n = nn-1; n >= 0; n--) { p = d_[n]; q = e_[n]; // Real vector if (q == 0) { int l = n; H(n, n) = 1.0; for (int i = n-1; i >= 0; i--) { w = H(i, i) - p; r = 0.0; for (int j = l; j <= n; j++) { r = r + H(i, j) * H(j, n); } if (e_[i] < 0.0) { z = w; s = r; } else { l = i; if (e_[i] == 0.0) { if (w != 0.0) { H(i, n) = -r / w; } else { H(i, n) = -r / (eps * norm); } // Solve real equations } else { x = H(i, i+1); y = H(i+1, i); q = (d_[i] - p) * (d_[i] - p) +e_[i] *e_[i]; t = (x * s - z * r) / q; H(i, n) = t; if (std::abs(x) > std::abs(z)) { H(i+1, n) = (-r - w * t) / x; } else { H(i+1, n) = (-s - y * t) / z; } } // Overflow control t = std::abs(H(i, n)); if ((eps * t) * t > 1) { for (int j = i; j <= n; j++) { H(j, n) = H(j, n) / t; } } } } // Complex vector } else if (q < 0) { int l = n-1; // Last vector component imaginary so matrix is triangular if (std::abs(H(n, n-1)) > std::abs(H(n-1, n))) { H(n-1, n-1) = q / H(n, n-1); H(n-1, n) = -(H(n, n) - p) / H(n, n-1); } else { Real cdivr, cdivi; cdiv(0.0, -H(n-1, n), H(n-1, n-1)-p, q, &cdivr, &cdivi); H(n-1, n-1) = cdivr; H(n-1, n) = cdivi; } H(n, n-1) = 0.0; H(n, n) = 1.0; for (int i = n-2; i >= 0; i--) { Real ra, sa, vr, vi; ra = 0.0; sa = 0.0; for (int j = l; j <= n; j++) { ra = ra + H(i, j) * H(j, n-1); sa = sa + H(i, j) * H(j, n); } w = H(i, i) - p; if (e_[i] < 0.0) { z = w; r = ra; s = sa; } else { l = i; if (e_[i] == 0) { Real cdivr, cdivi; cdiv(-ra, -sa, w, q, &cdivr, &cdivi); H(i, n-1) = cdivr; H(i, n) = cdivi; } else { Real cdivr, cdivi; // Solve complex equations x = H(i, i+1); y = H(i+1, i); vr = (d_[i] - p) * (d_[i] - p) +e_[i] *e_[i] - q * q; vi = (d_[i] - p) * 2.0 * q; if (vr == 0.0 && vi == 0.0) { vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x) + std::abs(y) + std::abs(z)); } cdiv(x*r-z*ra+q*sa, x*s-z*sa-q*ra, vr, vi, &cdivr, &cdivi); H(i, n-1) = cdivr; H(i, n) = cdivi; if (std::abs(x) > (std::abs(z) + std::abs(q))) { H(i+1, n-1) = (-ra - w * H(i, n-1) + q * H(i, n)) / x; H(i+1, n) = (-sa - w * H(i, n) - q * H(i, n-1)) / x; } else { cdiv(-r-y*H(i, n-1), -s-y*H(i, n), z, q, &cdivr, &cdivi); H(i+1, n-1) = cdivr; H(i+1, n) = cdivi; } } // Overflow control t = std::max(std::abs(H(i, n-1)), std::abs(H(i, n))); if ((eps * t) * t > 1) { for (int j = i; j <= n; j++) { H(j, n-1) = H(j, n-1) / t; H(j, n) = H(j, n) / t; } } } } } } // Vectors of isolated roots for (int i = 0; i < nn; i++) { if (i < low || i > high) { for (int j = i; j < nn; j++) { V(i, j) = H(i, j); } } } // Back transformation to get eigenvectors of original matrix for (int j = nn-1; j >= low; j--) { for (int i = low; i <= high; i++) { z = 0.0; for (int k = low; k <= std::min(j, high); k++) { z = z + V(i, k) * H(k, j); } V(i, j) = z; } } } template EigenvalueDecomposition::EigenvalueDecomposition(const MatrixBase &A) { KALDI_ASSERT(A.NumCols() == A.NumRows() && A.NumCols() >= 1); n_ = A.NumRows(); V_ = new Real[n_*n_]; d_ = new Real[n_]; e_ = new Real[n_]; H_ = NULL; ort_ = NULL; if (A.IsSymmetric(0.0)) { for (int i = 0; i < n_; i++) for (int j = 0; j < n_; j++) V(i, j) = A(i, j); // Note that V(i, j) is a member function; A(i, j) is an operator // of the matrix A. // Tridiagonalize. Tred2(); // Diagonalize. Tql2(); } else { H_ = new Real[n_*n_]; ort_ = new Real[n_]; for (int i = 0; i < n_; i++) for (int j = 0; j < n_; j++) H(i, j) = A(i, j); // as before: H is member function, A(i, j) is operator of matrix. // Reduce to Hessenberg form. Orthes(); // Reduce Hessenberg to real Schur form. Hqr2(); } } template EigenvalueDecomposition::~EigenvalueDecomposition() { delete [] d_; delete [] e_; delete [] V_; if (H_) delete [] H_; if (ort_) delete [] ort_; } // see function MatrixBase::Eig in kaldi-matrix.cc } // namespace kaldi #endif // KALDI_MATRIX_JAMA_EIG_H_