print = function(...) io.write(table.concat({...}, "\t")) end io.output('/dev/null') -- path and cpath are correctly set by `path.sh` local k,l,_=pcall(require,"luarocks.loader") _=k and l.add_context("nerv","scm-1") require 'nerv' nerv.printf("*** NERV: A Lua-based toolkit for high-performance deep learning (alpha) ***\n") nerv.info("automatically initialize a default MContext...") nerv.MMatrix._default_context = nerv.MContext() nerv.info("the default MContext is ok") -- only for backward compatibilty, will be removed in the future local function _add_profile_method(cls) local c = cls._default_context cls.print_profile = function () c:print_profile() end cls.clear_profile = function () c:clear_profile() end end _add_profile_method(nerv.MMatrix) function build_propagator(ifname, feature) local param_repo = nerv.ParamRepo() param_repo:import(ifname, gconf) local layer_repo = make_layer_repo(param_repo) local network = get_decode_network(layer_repo) local global_transf = get_global_transf(layer_repo) local input_order = get_decode_input_order() local input_name = gconf.decode_input_name or "main_scp" local readers = make_decode_readers(feature, layer_repo) --nerv.info("prepare") local buffer = nerv.SeqBuffer(gconf, { buffer_size = gconf.buffer_size, batch_size = gconf.batch_size, chunk_size = gconf.chunk_size, randomize = gconf.randomize, readers = readers, use_gpu = true }) network = nerv.Network("nt", gconf, {network = network}) network:init(gconf.batch_size, gconf.chunk_size) global_transf = nerv.Network("gt", gconf, {network = global_transf}) global_transf:init(gconf.batch_size, gconf.chunk_size) local prev_data = buffer:get_data() or nerv.error("no data in buffer") local terminate = false local input_pos = nil for i, v in ipairs(input_order) do if v.id == input_name then input_pos = i end end if input_pos == nil then nerv.error("input name %s not found in the input order list", input_name) end local batch_propagator = function() if terminate then return "", nil end global_transf:epoch_init() network:epoch_init() local accu_output = {} local utt_id = readers[input_pos].reader.key if utt_id == nil then nerv.error("no key found.") end while true do local d if prev_data then d = prev_data prev_data = nil else d = buffer:get_data() if d == nil then terminate = true break elseif #d.new_seq > 0 then prev_data = d -- the first data of the next utterance break end end local input = {} local output = {{}} for i, e in ipairs(input_order) do local id = e.id if d.data[id] == nil then nerv.error("input data %s not found", id) end local transformed = {} if e.global_transf then for _, mini_batch in ipairs(d.data[id]) do table.insert(transformed, nerv.speech_utils.global_transf(mini_batch, global_transf, gconf.frm_ext or 0, 0, gconf)) end else transformed = d.data[id] end table.insert(input, transformed) for i = 1, gconf.chunk_size do table.insert(output[1], gconf.mmat_type(gconf.batch_size, network.dim_out[1])) end end --nerv.info("input num: %d\nmat: %s\n", #input[1], input[1][1]) --nerv.info("output num: %d\nmat: %s\n", #output[1], output[1][1]) network:mini_batch_init({seq_length = d.seq_length, new_seq = d.new_seq, do_train = false, input = input, output = output, err_input = {}, err_output = {}}) network:propagate() for i, v in ipairs(output[1]) do --nerv.info(gconf.mask[i]) if gconf.mask[i][0][0] > 0 then -- is not a hole table.insert(accu_output, v) --nerv.info("input: %s\noutput: %s\n", input[1][i], output[1][i]) end end end local utt_matrix = gconf.mmat_type(#accu_output, accu_output[1]:ncol()) for i, v in ipairs(accu_output) do utt_matrix:copy_from(v, 0, v:nrow(), i - 1) end --nerv.info(utt_matrix) collectgarbage("collect") nerv.info("propagated %d features of an utterance", utt_matrix:nrow()) return utt_id, utt_matrix end return batch_propagator end function init(config, feature) dofile(config) gconf.mmat_type = nerv.MMatrixFloat gconf.use_cpu = true -- use CPU to decode gconf.batch_size = 1 trainer = build_propagator(gconf.decode_param, feature) end function feed() local utt, mat = trainer() return utt, mat end