# # ElGamal.py : ElGamal encryption/decryption and signatures # # Part of the Python Cryptography Toolkit # # Originally written by: A.M. Kuchling # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== """ElGamal public-key algorithm (randomized encryption and signature). Signature algorithm ------------------- The security of the ElGamal signature scheme is based (like DSA) on the discrete logarithm problem (DLP_). Given a cyclic group, a generator *g*, and an element *h*, it is hard to find an integer *x* such that *g^x = h*. The group is the largest multiplicative sub-group of the integers modulo *p*, with *p* prime. The signer holds a value *x* (*0>> from Crypto import Random >>> from Crypto.Random import random >>> from Crypto.PublicKey import ElGamal >>> from Crypto.Util.number import GCD >>> from Crypto.Hash import SHA >>> >>> message = "Hello" >>> key = ElGamal.generate(1024, Random.new().read) >>> h = SHA.new(message).digest() >>> while 1: >>> k = random.StrongRandom().randint(1,key.p-1) >>> if GCD(k,key.p-1)==1: break >>> sig = key.sign(h,k) >>> ... >>> if key.verify(h,sig): >>> print "OK" >>> else: >>> print "Incorrect signature" .. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf .. _CDH: http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption .. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf """ __revision__ = "$Id$" __all__ = ['generate', 'construct', 'error', 'ElGamalobj'] from Crypto.PublicKey.pubkey import * from Crypto.Util import number class error (Exception): pass # Generate an ElGamal key with N bits def generate(bits, randfunc, progress_func=None): """Randomly generate a fresh, new ElGamal key. The key will be safe for use for both encryption and signature (although it should be used for **only one** purpose). :Parameters: bits : int Key length, or size (in bits) of the modulus *p*. Recommended value is 2048. randfunc : callable Random number generation function; it should accept a single integer N and return a string of random data N bytes long. progress_func : callable Optional function that will be called with a short string containing the key parameter currently being generated; it's useful for interactive applications where a user is waiting for a key to be generated. :attention: You should always use a cryptographically secure random number generator, such as the one defined in the ``Crypto.Random`` module; **don't** just use the current time and the ``random`` module. :Return: An ElGamal key object (`ElGamalobj`). """ obj=ElGamalobj() # Generate a safe prime p # See Algorithm 4.86 in Handbook of Applied Cryptography if progress_func: progress_func('p\n') while 1: q = bignum(getPrime(bits-1, randfunc)) obj.p = 2*q+1 if number.isPrime(obj.p, randfunc=randfunc): break # Generate generator g # See Algorithm 4.80 in Handbook of Applied Cryptography # Note that the order of the group is n=p-1=2q, where q is prime if progress_func: progress_func('g\n') while 1: # We must avoid g=2 because of Bleichenbacher's attack described # in "Generating ElGamal signatures without knowning the secret key", # 1996 # obj.g = number.getRandomRange(3, obj.p, randfunc) safe = 1 if pow(obj.g, 2, obj.p)==1: safe=0 if safe and pow(obj.g, q, obj.p)==1: safe=0 # Discard g if it divides p-1 because of the attack described # in Note 11.67 (iii) in HAC if safe and divmod(obj.p-1, obj.g)[1]==0: safe=0 # g^{-1} must not divide p-1 because of Khadir's attack # described in "Conditions of the generator for forging ElGamal # signature", 2011 ginv = number.inverse(obj.g, obj.p) if safe and divmod(obj.p-1, ginv)[1]==0: safe=0 if safe: break # Generate private key x if progress_func: progress_func('x\n') obj.x=number.getRandomRange(2, obj.p-1, randfunc) # Generate public key y if progress_func: progress_func('y\n') obj.y = pow(obj.g, obj.x, obj.p) return obj def construct(tup): """Construct an ElGamal key from a tuple of valid ElGamal components. The modulus *p* must be a prime. The following conditions must apply: - 1 < g < p-1 - g^{p-1} = 1 mod p - 1 < x < p-1 - g^x = y mod p :Parameters: tup : tuple A tuple of long integers, with 3 or 4 items in the following order: 1. Modulus (*p*). 2. Generator (*g*). 3. Public key (*y*). 4. Private key (*x*). Optional. :Return: An ElGamal key object (`ElGamalobj`). """ obj=ElGamalobj() if len(tup) not in [3,4]: raise ValueError('argument for construct() wrong length') for i in range(len(tup)): field = obj.keydata[i] setattr(obj, field, tup[i]) return obj class ElGamalobj(pubkey): """Class defining an ElGamal key. :undocumented: __getstate__, __setstate__, __repr__, __getattr__ """ #: Dictionary of ElGamal parameters. #: #: A public key will only have the following entries: #: #: - **y**, the public key. #: - **g**, the generator. #: - **p**, the modulus. #: #: A private key will also have: #: #: - **x**, the private key. keydata=['p', 'g', 'y', 'x'] def encrypt(self, plaintext, K): """Encrypt a piece of data with ElGamal. :Parameter plaintext: The piece of data to encrypt with ElGamal. It must be numerically smaller than the module (*p*). :Type plaintext: byte string or long :Parameter K: A secret number, chosen randomly in the closed range *[1,p-2]*. :Type K: long (recommended) or byte string (not recommended) :Return: A tuple with two items. Each item is of the same type as the plaintext (string or long). :attention: selection of *K* is crucial for security. Generating a random number larger than *p-1* and taking the modulus by *p-1* is **not** secure, since smaller values will occur more frequently. Generating a random number systematically smaller than *p-1* (e.g. *floor((p-1)/8)* random bytes) is also **not** secure. In general, it shall not be possible for an attacker to know the value of any bit of K. :attention: The number *K* shall not be reused for any other operation and shall be discarded immediately. """ return pubkey.encrypt(self, plaintext, K) def decrypt(self, ciphertext): """Decrypt a piece of data with ElGamal. :Parameter ciphertext: The piece of data to decrypt with ElGamal. :Type ciphertext: byte string, long or a 2-item tuple as returned by `encrypt` :Return: A byte string if ciphertext was a byte string or a tuple of byte strings. A long otherwise. """ return pubkey.decrypt(self, ciphertext) def sign(self, M, K): """Sign a piece of data with ElGamal. :Parameter M: The piece of data to sign with ElGamal. It may not be longer in bit size than *p-1*. :Type M: byte string or long :Parameter K: A secret number, chosen randomly in the closed range *[1,p-2]* and such that *gcd(k,p-1)=1*. :Type K: long (recommended) or byte string (not recommended) :attention: selection of *K* is crucial for security. Generating a random number larger than *p-1* and taking the modulus by *p-1* is **not** secure, since smaller values will occur more frequently. Generating a random number systematically smaller than *p-1* (e.g. *floor((p-1)/8)* random bytes) is also **not** secure. In general, it shall not be possible for an attacker to know the value of any bit of K. :attention: The number *K* shall not be reused for any other operation and shall be discarded immediately. :attention: M must be be a cryptographic hash, otherwise an attacker may mount an existential forgery attack. :Return: A tuple with 2 longs. """ return pubkey.sign(self, M, K) def verify(self, M, signature): """Verify the validity of an ElGamal signature. :Parameter M: The expected message. :Type M: byte string or long :Parameter signature: The ElGamal signature to verify. :Type signature: A tuple with 2 longs as return by `sign` :Return: True if the signature is correct, False otherwise. """ return pubkey.verify(self, M, signature) def _encrypt(self, M, K): a=pow(self.g, K, self.p) b=( M*pow(self.y, K, self.p) ) % self.p return ( a,b ) def _decrypt(self, M): if (not hasattr(self, 'x')): raise TypeError('Private key not available in this object') ax=pow(M[0], self.x, self.p) plaintext=(M[1] * inverse(ax, self.p ) ) % self.p return plaintext def _sign(self, M, K): if (not hasattr(self, 'x')): raise TypeError('Private key not available in this object') p1=self.p-1 if (GCD(K, p1)!=1): raise ValueError('Bad K value: GCD(K,p-1)!=1') a=pow(self.g, K, self.p) t=(M-self.x*a) % p1 while t<0: t=t+p1 b=(t*inverse(K, p1)) % p1 return (a, b) def _verify(self, M, sig): if sig[0]<1 or sig[0]>self.p-1: return 0 v1=pow(self.y, sig[0], self.p) v1=(v1*pow(sig[0], sig[1], self.p)) % self.p v2=pow(self.g, M, self.p) if v1==v2: return 1 return 0 def size(self): return number.size(self.p) - 1 def has_private(self): if hasattr(self, 'x'): return 1 else: return 0 def publickey(self): return construct((self.p, self.g, self.y)) object=ElGamalobj