From 3bef51eec2299403467e621ae660cef3f9256ac8 Mon Sep 17 00:00:00 2001 From: Determinant Date: Tue, 17 Nov 2020 18:47:40 -0500 Subject: update frozen deps --- frozen_deps/Crypto/PublicKey/DSA.py | 379 +++++++++++ frozen_deps/Crypto/PublicKey/ElGamal.py | 373 +++++++++++ frozen_deps/Crypto/PublicKey/RSA.py | 719 +++++++++++++++++++++ frozen_deps/Crypto/PublicKey/_DSA.py | 115 ++++ frozen_deps/Crypto/PublicKey/_RSA.py | 81 +++ frozen_deps/Crypto/PublicKey/__init__.py | 41 ++ .../_fastmath.cpython-38-x86_64-linux-gnu.so | Bin 0 -> 78864 bytes frozen_deps/Crypto/PublicKey/_slowmath.py | 187 ++++++ frozen_deps/Crypto/PublicKey/pubkey.py | 240 +++++++ 9 files changed, 2135 insertions(+) create mode 100644 frozen_deps/Crypto/PublicKey/DSA.py create mode 100644 frozen_deps/Crypto/PublicKey/ElGamal.py create mode 100644 frozen_deps/Crypto/PublicKey/RSA.py create mode 100644 frozen_deps/Crypto/PublicKey/_DSA.py create mode 100644 frozen_deps/Crypto/PublicKey/_RSA.py create mode 100644 frozen_deps/Crypto/PublicKey/__init__.py create mode 100755 frozen_deps/Crypto/PublicKey/_fastmath.cpython-38-x86_64-linux-gnu.so create mode 100644 frozen_deps/Crypto/PublicKey/_slowmath.py create mode 100644 frozen_deps/Crypto/PublicKey/pubkey.py (limited to 'frozen_deps/Crypto/PublicKey') diff --git a/frozen_deps/Crypto/PublicKey/DSA.py b/frozen_deps/Crypto/PublicKey/DSA.py new file mode 100644 index 0000000..648f4b2 --- /dev/null +++ b/frozen_deps/Crypto/PublicKey/DSA.py @@ -0,0 +1,379 @@ +# -*- coding: utf-8 -*- +# +# PublicKey/DSA.py : DSA signature primitive +# +# Written in 2008 by Dwayne C. Litzenberger +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== + +"""DSA public-key signature algorithm. + +DSA_ is a widespread public-key signature algorithm. Its security is +based on the discrete logarithm problem (DLP_). Given a cyclic +group, a generator *g*, and an element *h*, it is hard +to find an integer *x* such that *g^x = h*. The problem is believed +to be difficult, and it has been proved such (and therefore secure) for +more than 30 years. + +The group is actually a sub-group over the integers modulo *p*, with *p* prime. +The sub-group order is *q*, which is prime too; it always holds that *(p-1)* is a multiple of *q*. +The cryptographic strength is linked to the magnitude of *p* and *q*. +The signer holds a value *x* (*0>> from Crypto.Random import random + >>> from Crypto.PublicKey import DSA + >>> from Crypto.Hash import SHA + >>> + >>> message = "Hello" + >>> key = DSA.generate(1024) + >>> h = SHA.new(message).digest() + >>> k = random.StrongRandom().randint(1,key.q-1) + >>> sig = key.sign(h,k) + >>> ... + >>> if key.verify(h,sig): + >>> print "OK" + >>> else: + >>> print "Incorrect signature" + +.. _DSA: http://en.wikipedia.org/wiki/Digital_Signature_Algorithm +.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf +.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf +""" + +__revision__ = "$Id$" + +__all__ = ['generate', 'construct', 'error', 'DSAImplementation', '_DSAobj'] + +import sys +if sys.version_info[0] == 2 and sys.version_info[1] == 1: + from Crypto.Util.py21compat import * + +from Crypto.PublicKey import _DSA, _slowmath, pubkey +from Crypto import Random + +try: + from Crypto.PublicKey import _fastmath +except ImportError: + _fastmath = None + +class _DSAobj(pubkey.pubkey): + """Class defining an actual DSA key. + + :undocumented: __getstate__, __setstate__, __repr__, __getattr__ + """ + #: Dictionary of DSA parameters. + #: + #: A public key will only have the following entries: + #: + #: - **y**, the public key. + #: - **g**, the generator. + #: - **p**, the modulus. + #: - **q**, the order of the sub-group. + #: + #: A private key will also have: + #: + #: - **x**, the private key. + keydata = ['y', 'g', 'p', 'q', 'x'] + + def __init__(self, implementation, key): + self.implementation = implementation + self.key = key + + def __getattr__(self, attrname): + if attrname in self.keydata: + # For backward compatibility, allow the user to get (not set) the + # DSA key parameters directly from this object. + return getattr(self.key, attrname) + else: + raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,)) + + def sign(self, M, K): + """Sign a piece of data with DSA. + + :Parameter M: The piece of data to sign with DSA. It may + not be longer in bit size than the sub-group order (*q*). + :Type M: byte string or long + + :Parameter K: A secret number, chosen randomly in the closed + range *[1,q-1]*. + :Type K: long (recommended) or byte string (not recommended) + + :attention: selection of *K* is crucial for security. Generating a + random number larger than *q* and taking the modulus by *q* is + **not** secure, since smaller values will occur more frequently. + Generating a random number systematically smaller than *q-1* + (e.g. *floor((q-1)/8)* random bytes) is also **not** secure. In general, + it shall not be possible for an attacker to know the value of `any + bit of K`__. + + :attention: The number *K* shall not be reused for any other + operation and shall be discarded immediately. + + :attention: M must be a digest cryptographic hash, otherwise + an attacker may mount an existential forgery attack. + + :Return: A tuple with 2 longs. + + .. __: http://www.di.ens.fr/~pnguyen/pub_NgSh00.htm + """ + return pubkey.pubkey.sign(self, M, K) + + def verify(self, M, signature): + """Verify the validity of a DSA signature. + + :Parameter M: The expected message. + :Type M: byte string or long + + :Parameter signature: The DSA signature to verify. + :Type signature: A tuple with 2 longs as return by `sign` + + :Return: True if the signature is correct, False otherwise. + """ + return pubkey.pubkey.verify(self, M, signature) + + def _encrypt(self, c, K): + raise TypeError("DSA cannot encrypt") + + def _decrypt(self, c): + raise TypeError("DSA cannot decrypt") + + def _blind(self, m, r): + raise TypeError("DSA cannot blind") + + def _unblind(self, m, r): + raise TypeError("DSA cannot unblind") + + def _sign(self, m, k): + return self.key._sign(m, k) + + def _verify(self, m, sig): + (r, s) = sig + return self.key._verify(m, r, s) + + def has_private(self): + return self.key.has_private() + + def size(self): + return self.key.size() + + def can_blind(self): + return False + + def can_encrypt(self): + return False + + def can_sign(self): + return True + + def publickey(self): + return self.implementation.construct((self.key.y, self.key.g, self.key.p, self.key.q)) + + def __getstate__(self): + d = {} + for k in self.keydata: + try: + d[k] = getattr(self.key, k) + except AttributeError: + pass + return d + + def __setstate__(self, d): + if not hasattr(self, 'implementation'): + self.implementation = DSAImplementation() + t = [] + for k in self.keydata: + if k not in d: + break + t.append(d[k]) + self.key = self.implementation._math.dsa_construct(*tuple(t)) + + def __repr__(self): + attrs = [] + for k in self.keydata: + if k == 'p': + attrs.append("p(%d)" % (self.size()+1,)) + elif hasattr(self.key, k): + attrs.append(k) + if self.has_private(): + attrs.append("private") + # PY3K: This is meant to be text, do not change to bytes (data) + return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs)) + +class DSAImplementation(object): + """ + A DSA key factory. + + This class is only internally used to implement the methods of the + `Crypto.PublicKey.DSA` module. + """ + + def __init__(self, **kwargs): + """Create a new DSA key factory. + + :Keywords: + use_fast_math : bool + Specify which mathematic library to use: + + - *None* (default). Use fastest math available. + - *True* . Use fast math. + - *False* . Use slow math. + default_randfunc : callable + Specify how to collect random data: + + - *None* (default). Use Random.new().read(). + - not *None* . Use the specified function directly. + :Raise RuntimeError: + When **use_fast_math** =True but fast math is not available. + """ + use_fast_math = kwargs.get('use_fast_math', None) + if use_fast_math is None: # Automatic + if _fastmath is not None: + self._math = _fastmath + else: + self._math = _slowmath + + elif use_fast_math: # Explicitly select fast math + if _fastmath is not None: + self._math = _fastmath + else: + raise RuntimeError("fast math module not available") + + else: # Explicitly select slow math + self._math = _slowmath + + self.error = self._math.error + + # 'default_randfunc' parameter: + # None (default) - use Random.new().read + # not None - use the specified function + self._default_randfunc = kwargs.get('default_randfunc', None) + self._current_randfunc = None + + def _get_randfunc(self, randfunc): + if randfunc is not None: + return randfunc + elif self._current_randfunc is None: + self._current_randfunc = Random.new().read + return self._current_randfunc + + def generate(self, bits, randfunc=None, progress_func=None): + """Randomly generate a fresh, new DSA key. + + :Parameters: + bits : int + Key length, or size (in bits) of the DSA modulus + *p*. + It must be a multiple of 64, in the closed + interval [512,1024]. + randfunc : callable + Random number generation function; it should accept + a single integer N and return a string of random data + N bytes long. + If not specified, a new one will be instantiated + from ``Crypto.Random``. + progress_func : callable + Optional function that will be called with a short string + containing the key parameter currently being generated; + it's useful for interactive applications where a user is + waiting for a key to be generated. + + :attention: You should always use a cryptographically secure random number generator, + such as the one defined in the ``Crypto.Random`` module; **don't** just use the + current time and the ``random`` module. + + :Return: A DSA key object (`_DSAobj`). + + :Raise ValueError: + When **bits** is too little, too big, or not a multiple of 64. + """ + + # Check against FIPS 186-2, which says that the size of the prime p + # must be a multiple of 64 bits between 512 and 1024 + for i in (0, 1, 2, 3, 4, 5, 6, 7, 8): + if bits == 512 + 64*i: + return self._generate(bits, randfunc, progress_func) + + # The March 2006 draft of FIPS 186-3 also allows 2048 and 3072-bit + # primes, but only with longer q values. Since the current DSA + # implementation only supports a 160-bit q, we don't support larger + # values. + raise ValueError("Number of bits in p must be a multiple of 64 between 512 and 1024, not %d bits" % (bits,)) + + def _generate(self, bits, randfunc=None, progress_func=None): + rf = self._get_randfunc(randfunc) + obj = _DSA.generate_py(bits, rf, progress_func) # TODO: Don't use legacy _DSA module + key = self._math.dsa_construct(obj.y, obj.g, obj.p, obj.q, obj.x) + return _DSAobj(self, key) + + def construct(self, tup): + """Construct a DSA key from a tuple of valid DSA components. + + The modulus *p* must be a prime. + + The following equations must apply: + + - p-1 = 0 mod q + - g^x = y mod p + - 0 < x < q + - 1 < g < p + + :Parameters: + tup : tuple + A tuple of long integers, with 4 or 5 items + in the following order: + + 1. Public key (*y*). + 2. Sub-group generator (*g*). + 3. Modulus, finite field order (*p*). + 4. Sub-group order (*q*). + 5. Private key (*x*). Optional. + + :Return: A DSA key object (`_DSAobj`). + """ + key = self._math.dsa_construct(*tup) + return _DSAobj(self, key) + +_impl = DSAImplementation() +generate = _impl.generate +construct = _impl.construct +error = _impl.error + +# vim:set ts=4 sw=4 sts=4 expandtab: + diff --git a/frozen_deps/Crypto/PublicKey/ElGamal.py b/frozen_deps/Crypto/PublicKey/ElGamal.py new file mode 100644 index 0000000..99af71c --- /dev/null +++ b/frozen_deps/Crypto/PublicKey/ElGamal.py @@ -0,0 +1,373 @@ +# +# ElGamal.py : ElGamal encryption/decryption and signatures +# +# Part of the Python Cryptography Toolkit +# +# Originally written by: A.M. Kuchling +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== + +"""ElGamal public-key algorithm (randomized encryption and signature). + +Signature algorithm +------------------- +The security of the ElGamal signature scheme is based (like DSA) on the discrete +logarithm problem (DLP_). Given a cyclic group, a generator *g*, +and an element *h*, it is hard to find an integer *x* such that *g^x = h*. + +The group is the largest multiplicative sub-group of the integers modulo *p*, +with *p* prime. +The signer holds a value *x* (*0>> from Crypto import Random + >>> from Crypto.Random import random + >>> from Crypto.PublicKey import ElGamal + >>> from Crypto.Util.number import GCD + >>> from Crypto.Hash import SHA + >>> + >>> message = "Hello" + >>> key = ElGamal.generate(1024, Random.new().read) + >>> h = SHA.new(message).digest() + >>> while 1: + >>> k = random.StrongRandom().randint(1,key.p-1) + >>> if GCD(k,key.p-1)==1: break + >>> sig = key.sign(h,k) + >>> ... + >>> if key.verify(h,sig): + >>> print "OK" + >>> else: + >>> print "Incorrect signature" + +.. _DLP: http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf +.. _CDH: http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption +.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf +""" + +__revision__ = "$Id$" + +__all__ = ['generate', 'construct', 'error', 'ElGamalobj'] + +from Crypto.PublicKey.pubkey import * +from Crypto.Util import number + +class error (Exception): + pass + +# Generate an ElGamal key with N bits +def generate(bits, randfunc, progress_func=None): + """Randomly generate a fresh, new ElGamal key. + + The key will be safe for use for both encryption and signature + (although it should be used for **only one** purpose). + + :Parameters: + bits : int + Key length, or size (in bits) of the modulus *p*. + Recommended value is 2048. + randfunc : callable + Random number generation function; it should accept + a single integer N and return a string of random data + N bytes long. + progress_func : callable + Optional function that will be called with a short string + containing the key parameter currently being generated; + it's useful for interactive applications where a user is + waiting for a key to be generated. + + :attention: You should always use a cryptographically secure random number generator, + such as the one defined in the ``Crypto.Random`` module; **don't** just use the + current time and the ``random`` module. + + :Return: An ElGamal key object (`ElGamalobj`). + """ + obj=ElGamalobj() + # Generate a safe prime p + # See Algorithm 4.86 in Handbook of Applied Cryptography + if progress_func: + progress_func('p\n') + while 1: + q = bignum(getPrime(bits-1, randfunc)) + obj.p = 2*q+1 + if number.isPrime(obj.p, randfunc=randfunc): + break + # Generate generator g + # See Algorithm 4.80 in Handbook of Applied Cryptography + # Note that the order of the group is n=p-1=2q, where q is prime + if progress_func: + progress_func('g\n') + while 1: + # We must avoid g=2 because of Bleichenbacher's attack described + # in "Generating ElGamal signatures without knowning the secret key", + # 1996 + # + obj.g = number.getRandomRange(3, obj.p, randfunc) + safe = 1 + if pow(obj.g, 2, obj.p)==1: + safe=0 + if safe and pow(obj.g, q, obj.p)==1: + safe=0 + # Discard g if it divides p-1 because of the attack described + # in Note 11.67 (iii) in HAC + if safe and divmod(obj.p-1, obj.g)[1]==0: + safe=0 + # g^{-1} must not divide p-1 because of Khadir's attack + # described in "Conditions of the generator for forging ElGamal + # signature", 2011 + ginv = number.inverse(obj.g, obj.p) + if safe and divmod(obj.p-1, ginv)[1]==0: + safe=0 + if safe: + break + # Generate private key x + if progress_func: + progress_func('x\n') + obj.x=number.getRandomRange(2, obj.p-1, randfunc) + # Generate public key y + if progress_func: + progress_func('y\n') + obj.y = pow(obj.g, obj.x, obj.p) + return obj + +def construct(tup): + """Construct an ElGamal key from a tuple of valid ElGamal components. + + The modulus *p* must be a prime. + + The following conditions must apply: + + - 1 < g < p-1 + - g^{p-1} = 1 mod p + - 1 < x < p-1 + - g^x = y mod p + + :Parameters: + tup : tuple + A tuple of long integers, with 3 or 4 items + in the following order: + + 1. Modulus (*p*). + 2. Generator (*g*). + 3. Public key (*y*). + 4. Private key (*x*). Optional. + + :Return: An ElGamal key object (`ElGamalobj`). + """ + + obj=ElGamalobj() + if len(tup) not in [3,4]: + raise ValueError('argument for construct() wrong length') + for i in range(len(tup)): + field = obj.keydata[i] + setattr(obj, field, tup[i]) + return obj + +class ElGamalobj(pubkey): + """Class defining an ElGamal key. + + :undocumented: __getstate__, __setstate__, __repr__, __getattr__ + """ + + #: Dictionary of ElGamal parameters. + #: + #: A public key will only have the following entries: + #: + #: - **y**, the public key. + #: - **g**, the generator. + #: - **p**, the modulus. + #: + #: A private key will also have: + #: + #: - **x**, the private key. + keydata=['p', 'g', 'y', 'x'] + + def encrypt(self, plaintext, K): + """Encrypt a piece of data with ElGamal. + + :Parameter plaintext: The piece of data to encrypt with ElGamal. + It must be numerically smaller than the module (*p*). + :Type plaintext: byte string or long + + :Parameter K: A secret number, chosen randomly in the closed + range *[1,p-2]*. + :Type K: long (recommended) or byte string (not recommended) + + :Return: A tuple with two items. Each item is of the same type as the + plaintext (string or long). + + :attention: selection of *K* is crucial for security. Generating a + random number larger than *p-1* and taking the modulus by *p-1* is + **not** secure, since smaller values will occur more frequently. + Generating a random number systematically smaller than *p-1* + (e.g. *floor((p-1)/8)* random bytes) is also **not** secure. + In general, it shall not be possible for an attacker to know + the value of any bit of K. + + :attention: The number *K* shall not be reused for any other + operation and shall be discarded immediately. + """ + return pubkey.encrypt(self, plaintext, K) + + def decrypt(self, ciphertext): + """Decrypt a piece of data with ElGamal. + + :Parameter ciphertext: The piece of data to decrypt with ElGamal. + :Type ciphertext: byte string, long or a 2-item tuple as returned + by `encrypt` + + :Return: A byte string if ciphertext was a byte string or a tuple + of byte strings. A long otherwise. + """ + return pubkey.decrypt(self, ciphertext) + + def sign(self, M, K): + """Sign a piece of data with ElGamal. + + :Parameter M: The piece of data to sign with ElGamal. It may + not be longer in bit size than *p-1*. + :Type M: byte string or long + + :Parameter K: A secret number, chosen randomly in the closed + range *[1,p-2]* and such that *gcd(k,p-1)=1*. + :Type K: long (recommended) or byte string (not recommended) + + :attention: selection of *K* is crucial for security. Generating a + random number larger than *p-1* and taking the modulus by *p-1* is + **not** secure, since smaller values will occur more frequently. + Generating a random number systematically smaller than *p-1* + (e.g. *floor((p-1)/8)* random bytes) is also **not** secure. + In general, it shall not be possible for an attacker to know + the value of any bit of K. + + :attention: The number *K* shall not be reused for any other + operation and shall be discarded immediately. + + :attention: M must be be a cryptographic hash, otherwise an + attacker may mount an existential forgery attack. + + :Return: A tuple with 2 longs. + """ + return pubkey.sign(self, M, K) + + def verify(self, M, signature): + """Verify the validity of an ElGamal signature. + + :Parameter M: The expected message. + :Type M: byte string or long + + :Parameter signature: The ElGamal signature to verify. + :Type signature: A tuple with 2 longs as return by `sign` + + :Return: True if the signature is correct, False otherwise. + """ + return pubkey.verify(self, M, signature) + + def _encrypt(self, M, K): + a=pow(self.g, K, self.p) + b=( M*pow(self.y, K, self.p) ) % self.p + return ( a,b ) + + def _decrypt(self, M): + if (not hasattr(self, 'x')): + raise TypeError('Private key not available in this object') + ax=pow(M[0], self.x, self.p) + plaintext=(M[1] * inverse(ax, self.p ) ) % self.p + return plaintext + + def _sign(self, M, K): + if (not hasattr(self, 'x')): + raise TypeError('Private key not available in this object') + p1=self.p-1 + if (GCD(K, p1)!=1): + raise ValueError('Bad K value: GCD(K,p-1)!=1') + a=pow(self.g, K, self.p) + t=(M-self.x*a) % p1 + while t<0: t=t+p1 + b=(t*inverse(K, p1)) % p1 + return (a, b) + + def _verify(self, M, sig): + if sig[0]<1 or sig[0]>self.p-1: + return 0 + v1=pow(self.y, sig[0], self.p) + v1=(v1*pow(sig[0], sig[1], self.p)) % self.p + v2=pow(self.g, M, self.p) + if v1==v2: + return 1 + return 0 + + def size(self): + return number.size(self.p) - 1 + + def has_private(self): + if hasattr(self, 'x'): + return 1 + else: + return 0 + + def publickey(self): + return construct((self.p, self.g, self.y)) + + +object=ElGamalobj diff --git a/frozen_deps/Crypto/PublicKey/RSA.py b/frozen_deps/Crypto/PublicKey/RSA.py new file mode 100644 index 0000000..debe39e --- /dev/null +++ b/frozen_deps/Crypto/PublicKey/RSA.py @@ -0,0 +1,719 @@ +# -*- coding: utf-8 -*- +# +# PublicKey/RSA.py : RSA public key primitive +# +# Written in 2008 by Dwayne C. Litzenberger +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== + +"""RSA public-key cryptography algorithm (signature and encryption). + +RSA_ is the most widespread and used public key algorithm. Its security is +based on the difficulty of factoring large integers. The algorithm has +withstood attacks for 30 years, and it is therefore considered reasonably +secure for new designs. + +The algorithm can be used for both confidentiality (encryption) and +authentication (digital signature). It is worth noting that signing and +decryption are significantly slower than verification and encryption. +The cryptograhic strength is primarily linked to the length of the modulus *n*. +In 2012, a sufficient length is deemed to be 2048 bits. For more information, +see the most recent ECRYPT_ report. + +Both RSA ciphertext and RSA signature are as big as the modulus *n* (256 +bytes if *n* is 2048 bit long). + +This module provides facilities for generating fresh, new RSA keys, constructing +them from known components, exporting them, and importing them. + + >>> from Crypto.PublicKey import RSA + >>> + >>> key = RSA.generate(2048) + >>> f = open('mykey.pem','w') + >>> f.write(RSA.exportKey('PEM')) + >>> f.close() + ... + >>> f = open('mykey.pem','r') + >>> key = RSA.importKey(f.read()) + +Even though you may choose to directly use the methods of an RSA key object +to perform the primitive cryptographic operations (e.g. `_RSAobj.encrypt`), +it is recommended to use one of the standardized schemes instead (like +`Crypto.Cipher.PKCS1_v1_5` or `Crypto.Signature.PKCS1_v1_5`). + +.. _RSA: http://en.wikipedia.org/wiki/RSA_%28algorithm%29 +.. _ECRYPT: http://www.ecrypt.eu.org/documents/D.SPA.17.pdf + +:sort: generate,construct,importKey,error +""" + +__revision__ = "$Id$" + +__all__ = ['generate', 'construct', 'error', 'importKey', 'RSAImplementation', '_RSAobj'] + +import sys +if sys.version_info[0] == 2 and sys.version_info[1] == 1: + from Crypto.Util.py21compat import * +from Crypto.Util.py3compat import * +#from Crypto.Util.python_compat import * +from Crypto.Util.number import getRandomRange, bytes_to_long, long_to_bytes + +from Crypto.PublicKey import _RSA, _slowmath, pubkey +from Crypto import Random + +from Crypto.Util.asn1 import DerObject, DerSequence, DerNull +import binascii +import struct + +from Crypto.Util.number import inverse + +from Crypto.Util.number import inverse + +try: + from Crypto.PublicKey import _fastmath +except ImportError: + _fastmath = None + +class _RSAobj(pubkey.pubkey): + """Class defining an actual RSA key. + + :undocumented: __getstate__, __setstate__, __repr__, __getattr__ + """ + #: Dictionary of RSA parameters. + #: + #: A public key will only have the following entries: + #: + #: - **n**, the modulus. + #: - **e**, the public exponent. + #: + #: A private key will also have: + #: + #: - **d**, the private exponent. + #: - **p**, the first factor of n. + #: - **q**, the second factor of n. + #: - **u**, the CRT coefficient (1/p) mod q. + keydata = ['n', 'e', 'd', 'p', 'q', 'u'] + + def __init__(self, implementation, key, randfunc=None): + self.implementation = implementation + self.key = key + if randfunc is None: + randfunc = Random.new().read + self._randfunc = randfunc + + def __getattr__(self, attrname): + if attrname in self.keydata: + # For backward compatibility, allow the user to get (not set) the + # RSA key parameters directly from this object. + return getattr(self.key, attrname) + else: + raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,)) + + def encrypt(self, plaintext, K): + """Encrypt a piece of data with RSA. + + :Parameter plaintext: The piece of data to encrypt with RSA. It may not + be numerically larger than the RSA module (**n**). + :Type plaintext: byte string or long + + :Parameter K: A random parameter (*for compatibility only. This + value will be ignored*) + :Type K: byte string or long + + :attention: this function performs the plain, primitive RSA encryption + (*textbook*). In real applications, you always need to use proper + cryptographic padding, and you should not directly encrypt data with + this method. Failure to do so may lead to security vulnerabilities. + It is recommended to use modules + `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead. + + :Return: A tuple with two items. The first item is the ciphertext + of the same type as the plaintext (string or long). The second item + is always None. + """ + return pubkey.pubkey.encrypt(self, plaintext, K) + + def decrypt(self, ciphertext): + """Decrypt a piece of data with RSA. + + Decryption always takes place with blinding. + + :attention: this function performs the plain, primitive RSA decryption + (*textbook*). In real applications, you always need to use proper + cryptographic padding, and you should not directly decrypt data with + this method. Failure to do so may lead to security vulnerabilities. + It is recommended to use modules + `Crypto.Cipher.PKCS1_OAEP` or `Crypto.Cipher.PKCS1_v1_5` instead. + + :Parameter ciphertext: The piece of data to decrypt with RSA. It may + not be numerically larger than the RSA module (**n**). If a tuple, + the first item is the actual ciphertext; the second item is ignored. + + :Type ciphertext: byte string, long or a 2-item tuple as returned by + `encrypt` + + :Return: A byte string if ciphertext was a byte string or a tuple + of byte strings. A long otherwise. + """ + return pubkey.pubkey.decrypt(self, ciphertext) + + def sign(self, M, K): + """Sign a piece of data with RSA. + + Signing always takes place with blinding. + + :attention: this function performs the plain, primitive RSA decryption + (*textbook*). In real applications, you always need to use proper + cryptographic padding, and you should not directly sign data with + this method. Failure to do so may lead to security vulnerabilities. + It is recommended to use modules + `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead. + + :Parameter M: The piece of data to sign with RSA. It may + not be numerically larger than the RSA module (**n**). + :Type M: byte string or long + + :Parameter K: A random parameter (*for compatibility only. This + value will be ignored*) + :Type K: byte string or long + + :Return: A 2-item tuple. The first item is the actual signature (a + long). The second item is always None. + """ + return pubkey.pubkey.sign(self, M, K) + + def verify(self, M, signature): + """Verify the validity of an RSA signature. + + :attention: this function performs the plain, primitive RSA encryption + (*textbook*). In real applications, you always need to use proper + cryptographic padding, and you should not directly verify data with + this method. Failure to do so may lead to security vulnerabilities. + It is recommended to use modules + `Crypto.Signature.PKCS1_PSS` or `Crypto.Signature.PKCS1_v1_5` instead. + + :Parameter M: The expected message. + :Type M: byte string or long + + :Parameter signature: The RSA signature to verify. The first item of + the tuple is the actual signature (a long not larger than the modulus + **n**), whereas the second item is always ignored. + :Type signature: A 2-item tuple as return by `sign` + + :Return: True if the signature is correct, False otherwise. + """ + return pubkey.pubkey.verify(self, M, signature) + + def _encrypt(self, c, K): + return (self.key._encrypt(c),) + + def _decrypt(self, c): + #(ciphertext,) = c + (ciphertext,) = c[:1] # HACK - We should use the previous line + # instead, but this is more compatible and we're + # going to replace the Crypto.PublicKey API soon + # anyway. + + # Blinded RSA decryption (to prevent timing attacks): + # Step 1: Generate random secret blinding factor r, such that 0 < r < n-1 + r = getRandomRange(1, self.key.n-1, randfunc=self._randfunc) + # Step 2: Compute c' = c * r**e mod n + cp = self.key._blind(ciphertext, r) + # Step 3: Compute m' = c'**d mod n (ordinary RSA decryption) + mp = self.key._decrypt(cp) + # Step 4: Compute m = m**(r-1) mod n + return self.key._unblind(mp, r) + + def _blind(self, m, r): + return self.key._blind(m, r) + + def _unblind(self, m, r): + return self.key._unblind(m, r) + + def _sign(self, m, K=None): + return (self.key._sign(m),) + + def _verify(self, m, sig): + #(s,) = sig + (s,) = sig[:1] # HACK - We should use the previous line instead, but + # this is more compatible and we're going to replace + # the Crypto.PublicKey API soon anyway. + return self.key._verify(m, s) + + def has_private(self): + return self.key.has_private() + + def size(self): + return self.key.size() + + def can_blind(self): + return True + + def can_encrypt(self): + return True + + def can_sign(self): + return True + + def publickey(self): + return self.implementation.construct((self.key.n, self.key.e)) + + def __getstate__(self): + d = {} + for k in self.keydata: + try: + d[k] = getattr(self.key, k) + except AttributeError: + pass + return d + + def __setstate__(self, d): + if not hasattr(self, 'implementation'): + self.implementation = RSAImplementation() + t = [] + for k in self.keydata: + if k not in d: + break + t.append(d[k]) + self.key = self.implementation._math.rsa_construct(*tuple(t)) + + def __repr__(self): + attrs = [] + for k in self.keydata: + if k == 'n': + attrs.append("n(%d)" % (self.size()+1,)) + elif hasattr(self.key, k): + attrs.append(k) + if self.has_private(): + attrs.append("private") + # PY3K: This is meant to be text, do not change to bytes (data) + return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs)) + + def exportKey(self, format='PEM', passphrase=None, pkcs=1): + """Export this RSA key. + + :Parameter format: The format to use for wrapping the key. + + - *'DER'*. Binary encoding, always unencrypted. + - *'PEM'*. Textual encoding, done according to `RFC1421`_/`RFC1423`_. + Unencrypted (default) or encrypted. + - *'OpenSSH'*. Textual encoding, done according to OpenSSH specification. + Only suitable for public keys (not private keys). + :Type format: string + + :Parameter passphrase: In case of PEM, the pass phrase to derive the encryption key from. + :Type passphrase: string + + :Parameter pkcs: The PKCS standard to follow for assembling the key. + You have two choices: + + - with **1**, the public key is embedded into an X.509 `SubjectPublicKeyInfo` DER SEQUENCE. + The private key is embedded into a `PKCS#1`_ `RSAPrivateKey` DER SEQUENCE. + This mode is the default. + - with **8**, the private key is embedded into a `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE. + This mode is not available for public keys. + + PKCS standards are not relevant for the *OpenSSH* format. + :Type pkcs: integer + + :Return: A byte string with the encoded public or private half. + :Raise ValueError: + When the format is unknown. + + .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt + .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt + .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt + .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt + """ + if passphrase is not None: + passphrase = tobytes(passphrase) + if format=='OpenSSH': + eb = long_to_bytes(self.e) + nb = long_to_bytes(self.n) + if bord(eb[0]) & 0x80: eb=bchr(0x00)+eb + if bord(nb[0]) & 0x80: nb=bchr(0x00)+nb + keyparts = [ 'ssh-rsa', eb, nb ] + keystring = ''.join([ struct.pack(">I",len(kp))+kp for kp in keyparts]) + return 'ssh-rsa '+binascii.b2a_base64(keystring)[:-1] + + # DER format is always used, even in case of PEM, which simply + # encodes it into BASE64. + der = DerSequence() + if self.has_private(): + keyType= { 1: 'RSA PRIVATE', 8: 'PRIVATE' }[pkcs] + der[:] = [ 0, self.n, self.e, self.d, self.p, self.q, + self.d % (self.p-1), self.d % (self.q-1), + inverse(self.q, self.p) ] + if pkcs==8: + derkey = der.encode() + der = DerSequence([0]) + der.append(algorithmIdentifier) + der.append(DerObject('OCTET STRING', derkey).encode()) + else: + keyType = "PUBLIC" + der.append(algorithmIdentifier) + bitmap = DerObject('BIT STRING') + derPK = DerSequence( [ self.n, self.e ] ) + bitmap.payload = bchr(0x00) + derPK.encode() + der.append(bitmap.encode()) + if format=='DER': + return der.encode() + if format=='PEM': + pem = b("-----BEGIN " + keyType + " KEY-----\n") + objenc = None + if passphrase and keyType.endswith('PRIVATE'): + # We only support 3DES for encryption + import Crypto.Hash.MD5 + from Crypto.Cipher import DES3 + from Crypto.Protocol.KDF import PBKDF1 + salt = self._randfunc(8) + key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5) + key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5) + objenc = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt) + pem += b('Proc-Type: 4,ENCRYPTED\n') + pem += b('DEK-Info: DES-EDE3-CBC,') + binascii.b2a_hex(salt).upper() + b('\n\n') + + binaryKey = der.encode() + if objenc: + # Add PKCS#7-like padding + padding = objenc.block_size-len(binaryKey)%objenc.block_size + binaryKey = objenc.encrypt(binaryKey+bchr(padding)*padding) + + # Each BASE64 line can take up to 64 characters (=48 bytes of data) + chunks = [ binascii.b2a_base64(binaryKey[i:i+48]) for i in range(0, len(binaryKey), 48) ] + pem += b('').join(chunks) + pem += b("-----END " + keyType + " KEY-----") + return pem + return ValueError("Unknown key format '%s'. Cannot export the RSA key." % format) + +class RSAImplementation(object): + """ + An RSA key factory. + + This class is only internally used to implement the methods of the `Crypto.PublicKey.RSA` module. + + :sort: __init__,generate,construct,importKey + :undocumented: _g*, _i* + """ + + def __init__(self, **kwargs): + """Create a new RSA key factory. + + :Keywords: + use_fast_math : bool + Specify which mathematic library to use: + + - *None* (default). Use fastest math available. + - *True* . Use fast math. + - *False* . Use slow math. + default_randfunc : callable + Specify how to collect random data: + + - *None* (default). Use Random.new().read(). + - not *None* . Use the specified function directly. + :Raise RuntimeError: + When **use_fast_math** =True but fast math is not available. + """ + use_fast_math = kwargs.get('use_fast_math', None) + if use_fast_math is None: # Automatic + if _fastmath is not None: + self._math = _fastmath + else: + self._math = _slowmath + + elif use_fast_math: # Explicitly select fast math + if _fastmath is not None: + self._math = _fastmath + else: + raise RuntimeError("fast math module not available") + + else: # Explicitly select slow math + self._math = _slowmath + + self.error = self._math.error + + self._default_randfunc = kwargs.get('default_randfunc', None) + self._current_randfunc = None + + def _get_randfunc(self, randfunc): + if randfunc is not None: + return randfunc + elif self._current_randfunc is None: + self._current_randfunc = Random.new().read + return self._current_randfunc + + def generate(self, bits, randfunc=None, progress_func=None, e=65537): + """Randomly generate a fresh, new RSA key. + + :Parameters: + bits : int + Key length, or size (in bits) of the RSA modulus. + It must be a multiple of 256, and no smaller than 1024. + + randfunc : callable + Random number generation function; it should accept + a single integer N and return a string of random data + N bytes long. + If not specified, a new one will be instantiated + from ``Crypto.Random``. + + progress_func : callable + Optional function that will be called with a short string + containing the key parameter currently being generated; + it's useful for interactive applications where a user is + waiting for a key to be generated. + + e : int + Public RSA exponent. It must be an odd positive integer. + It is typically a small number with very few ones in its + binary representation. + The default value 65537 (= ``0b10000000000000001`` ) is a safe + choice: other common values are 5, 7, 17, and 257. + + :attention: You should always use a cryptographically secure random number generator, + such as the one defined in the ``Crypto.Random`` module; **don't** just use the + current time and the ``random`` module. + + :attention: Exponent 3 is also widely used, but it requires very special care when padding + the message. + + :Return: An RSA key object (`_RSAobj`). + + :Raise ValueError: + When **bits** is too little or not a multiple of 256, or when + **e** is not odd or smaller than 2. + """ + if bits < 1024 or (bits & 0xff) != 0: + # pubkey.getStrongPrime doesn't like anything that's not a multiple of 256 and >= 1024 + raise ValueError("RSA modulus length must be a multiple of 256 and >= 1024") + if e%2==0 or e<3: + raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.") + rf = self._get_randfunc(randfunc) + obj = _RSA.generate_py(bits, rf, progress_func, e) # TODO: Don't use legacy _RSA module + key = self._math.rsa_construct(obj.n, obj.e, obj.d, obj.p, obj.q, obj.u) + return _RSAobj(self, key) + + def construct(self, tup): + """Construct an RSA key from a tuple of valid RSA components. + + The modulus **n** must be the product of two primes. + The public exponent **e** must be odd and larger than 1. + + In case of a private key, the following equations must apply: + + - e != 1 + - p*q = n + - e*d = 1 mod (p-1)(q-1) + - p*u = 1 mod q + + :Parameters: + tup : tuple + A tuple of long integers, with at least 2 and no + more than 6 items. The items come in the following order: + + 1. RSA modulus (n). + 2. Public exponent (e). + 3. Private exponent (d). Only required if the key is private. + 4. First factor of n (p). Optional. + 5. Second factor of n (q). Optional. + 6. CRT coefficient, (1/p) mod q (u). Optional. + + :Return: An RSA key object (`_RSAobj`). + """ + key = self._math.rsa_construct(*tup) + return _RSAobj(self, key) + + def _importKeyDER(self, externKey): + """Import an RSA key (public or private half), encoded in DER form.""" + + try: + + der = DerSequence() + der.decode(externKey, True) + + # Try PKCS#1 first, for a private key + if len(der)==9 and der.hasOnlyInts() and der[0]==0: + # ASN.1 RSAPrivateKey element + del der[6:] # Remove d mod (p-1), d mod (q-1), and q^{-1} mod p + der.append(inverse(der[4],der[5])) # Add p^{-1} mod q + del der[0] # Remove version + return self.construct(der[:]) + + # Keep on trying PKCS#1, but now for a public key + if len(der)==2: + # The DER object is an RSAPublicKey SEQUENCE with two elements + if der.hasOnlyInts(): + return self.construct(der[:]) + # The DER object is a SubjectPublicKeyInfo SEQUENCE with two elements: + # an 'algorithm' (or 'algorithmIdentifier') SEQUENCE and a 'subjectPublicKey' BIT STRING. + # 'algorithm' takes the value given a few lines above. + # 'subjectPublicKey' encapsulates the actual ASN.1 RSAPublicKey element. + if der[0]==algorithmIdentifier: + bitmap = DerObject() + bitmap.decode(der[1], True) + if bitmap.isType('BIT STRING') and bord(bitmap.payload[0])==0x00: + der.decode(bitmap.payload[1:], True) + if len(der)==2 and der.hasOnlyInts(): + return self.construct(der[:]) + + # Try unencrypted PKCS#8 + if der[0]==0: + # The second element in the SEQUENCE is algorithmIdentifier. + # It must say RSA (see above for description). + if der[1]==algorithmIdentifier: + privateKey = DerObject() + privateKey.decode(der[2], True) + if privateKey.isType('OCTET STRING'): + return self._importKeyDER(privateKey.payload) + + except ValueError as IndexError: + pass + + raise ValueError("RSA key format is not supported") + + def importKey(self, externKey, passphrase=None): + """Import an RSA key (public or private half), encoded in standard form. + + :Parameter externKey: + The RSA key to import, encoded as a string. + + An RSA public key can be in any of the following formats: + + - X.509 `subjectPublicKeyInfo` DER SEQUENCE (binary or PEM encoding) + - `PKCS#1`_ `RSAPublicKey` DER SEQUENCE (binary or PEM encoding) + - OpenSSH (textual public key only) + + An RSA private key can be in any of the following formats: + + - PKCS#1 `RSAPrivateKey` DER SEQUENCE (binary or PEM encoding) + - `PKCS#8`_ `PrivateKeyInfo` DER SEQUENCE (binary or PEM encoding) + - OpenSSH (textual public key only) + + For details about the PEM encoding, see `RFC1421`_/`RFC1423`_. + + In case of PEM encoding, the private key can be encrypted with DES or 3TDES according to a certain ``pass phrase``. + Only OpenSSL-compatible pass phrases are supported. + :Type externKey: string + + :Parameter passphrase: + In case of an encrypted PEM key, this is the pass phrase from which the encryption key is derived. + :Type passphrase: string + + :Return: An RSA key object (`_RSAobj`). + + :Raise ValueError/IndexError/TypeError: + When the given key cannot be parsed (possibly because the pass phrase is wrong). + + .. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt + .. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt + .. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt + .. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt + """ + externKey = tobytes(externKey) + if passphrase is not None: + passphrase = tobytes(passphrase) + + if externKey.startswith(b('-----')): + # This is probably a PEM encoded key + lines = externKey.replace(b(" "),b('')).split() + keyobj = None + + # The encrypted PEM format + if lines[1].startswith(b('Proc-Type:4,ENCRYPTED')): + DEK = lines[2].split(b(':')) + if len(DEK)!=2 or DEK[0]!=b('DEK-Info') or not passphrase: + raise ValueError("PEM encryption format not supported.") + algo, salt = DEK[1].split(b(',')) + salt = binascii.a2b_hex(salt) + import Crypto.Hash.MD5 + from Crypto.Cipher import DES, DES3 + from Crypto.Protocol.KDF import PBKDF1 + if algo==b("DES-CBC"): + # This is EVP_BytesToKey in OpenSSL + key = PBKDF1(passphrase, salt, 8, 1, Crypto.Hash.MD5) + keyobj = DES.new(key, Crypto.Cipher.DES.MODE_CBC, salt) + elif algo==b("DES-EDE3-CBC"): + # Note that EVP_BytesToKey is note exactly the same as PBKDF1 + key = PBKDF1(passphrase, salt, 16, 1, Crypto.Hash.MD5) + key += PBKDF1(key+passphrase, salt, 8, 1, Crypto.Hash.MD5) + keyobj = DES3.new(key, Crypto.Cipher.DES3.MODE_CBC, salt) + else: + raise ValueError("Unsupport PEM encryption algorithm.") + lines = lines[2:] + + der = binascii.a2b_base64(b('').join(lines[1:-1])) + if keyobj: + der = keyobj.decrypt(der) + padding = bord(der[-1]) + der = der[:-padding] + return self._importKeyDER(der) + + if externKey.startswith(b('ssh-rsa ')): + # This is probably an OpenSSH key + keystring = binascii.a2b_base64(externKey.split(b(' '))[1]) + keyparts = [] + while len(keystring)>4: + l = struct.unpack(">I",keystring[:4])[0] + keyparts.append(keystring[4:4+l]) + keystring = keystring[4+l:] + e = bytes_to_long(keyparts[1]) + n = bytes_to_long(keyparts[2]) + return self.construct([n, e]) + if bord(externKey[0])==0x30: + # This is probably a DER encoded key + return self._importKeyDER(externKey) + + raise ValueError("RSA key format is not supported") + +#: This is the ASN.1 DER object that qualifies an algorithm as +#: compliant to PKCS#1 (that is, the standard RSA). +# It is found in all 'algorithm' fields (also called 'algorithmIdentifier'). +# It is a SEQUENCE with the oid assigned to RSA and with its parameters (none). +# 0x06 0x09 OBJECT IDENTIFIER, 9 bytes of payload +# 0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x01 0x01 +# rsaEncryption (1 2 840 113549 1 1 1) (PKCS #1) +# 0x05 0x00 NULL +algorithmIdentifier = DerSequence( + [ b('\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01'), + DerNull().encode() ] + ).encode() + +_impl = RSAImplementation() +#: +#: Randomly generate a fresh, new RSA key object. +#: +#: See `RSAImplementation.generate`. +#: +generate = _impl.generate +#: +#: Construct an RSA key object from a tuple of valid RSA components. +#: +#: See `RSAImplementation.construct`. +#: +construct = _impl.construct +#: +#: Import an RSA key (public or private half), encoded in standard form. +#: +#: See `RSAImplementation.importKey`. +#: +importKey = _impl.importKey +error = _impl.error + +# vim:set ts=4 sw=4 sts=4 expandtab: + diff --git a/frozen_deps/Crypto/PublicKey/_DSA.py b/frozen_deps/Crypto/PublicKey/_DSA.py new file mode 100644 index 0000000..1787ced --- /dev/null +++ b/frozen_deps/Crypto/PublicKey/_DSA.py @@ -0,0 +1,115 @@ + +# +# DSA.py : Digital Signature Algorithm +# +# Part of the Python Cryptography Toolkit +# +# Written by Andrew Kuchling, Paul Swartz, and others +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== +# + +__revision__ = "$Id$" + +from Crypto.PublicKey.pubkey import * +from Crypto.Util import number +from Crypto.Util.number import bytes_to_long, long_to_bytes +from Crypto.Hash import SHA +from Crypto.Util.py3compat import * + +class error (Exception): + pass + +def generateQ(randfunc): + S=randfunc(20) + hash1=SHA.new(S).digest() + hash2=SHA.new(long_to_bytes(bytes_to_long(S)+1)).digest() + q = bignum(0) + for i in range(0,20): + c=bord(hash1[i])^bord(hash2[i]) + if i==0: + c=c | 128 + if i==19: + c= c | 1 + q=q*256+c + while (not isPrime(q)): + q=q+2 + if pow(2,159) < q < pow(2,160): + return S, q + raise RuntimeError('Bad q value generated') + +def generate_py(bits, randfunc, progress_func=None): + """generate(bits:int, randfunc:callable, progress_func:callable) + + Generate a DSA key of length 'bits', using 'randfunc' to get + random data and 'progress_func', if present, to display + the progress of the key generation. + """ + + if bits<160: + raise ValueError('Key length < 160 bits') + obj=DSAobj() + # Generate string S and prime q + if progress_func: + progress_func('p,q\n') + while (1): + S, obj.q = generateQ(randfunc) + n=divmod(bits-1, 160)[0] + C, N, V = 0, 2, {} + b=(obj.q >> 5) & 15 + powb=pow(bignum(2), b) + powL1=pow(bignum(2), bits-1) + while C<4096: + for k in range(0, n+1): + V[k]=bytes_to_long(SHA.new(S+bstr(N)+bstr(k)).digest()) + W=V[n] % powb + for k in range(n-1, -1, -1): + W=(W<<160)+V[k] + X=W+powL1 + p=X-(X%(2*obj.q)-1) + if powL1<=p and isPrime(p): + break + C, N = C+1, N+n+1 + if C<4096: + break + if progress_func: + progress_func('4096 multiples failed\n') + + obj.p = p + power=divmod(p-1, obj.q)[0] + if progress_func: + progress_func('h,g\n') + while (1): + h=bytes_to_long(randfunc(bits)) % (p-1) + g=pow(h, power, p) + if 11: + break + obj.g=g + if progress_func: + progress_func('x,y\n') + while (1): + x=bytes_to_long(randfunc(20)) + if 0 < x < obj.q: + break + obj.x, obj.y = x, pow(g, x, p) + return obj + +class DSAobj: + pass + diff --git a/frozen_deps/Crypto/PublicKey/_RSA.py b/frozen_deps/Crypto/PublicKey/_RSA.py new file mode 100644 index 0000000..601ab7c --- /dev/null +++ b/frozen_deps/Crypto/PublicKey/_RSA.py @@ -0,0 +1,81 @@ +# +# RSA.py : RSA encryption/decryption +# +# Part of the Python Cryptography Toolkit +# +# Written by Andrew Kuchling, Paul Swartz, and others +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== +# + +__revision__ = "$Id$" + +from Crypto.PublicKey import pubkey +from Crypto.Util import number + +def generate_py(bits, randfunc, progress_func=None, e=65537): + """generate(bits:int, randfunc:callable, progress_func:callable, e:int) + + Generate an RSA key of length 'bits', public exponent 'e'(which must be + odd), using 'randfunc' to get random data and 'progress_func', + if present, to display the progress of the key generation. + """ + obj=RSAobj() + obj.e = int(e) + + # Generate the prime factors of n + if progress_func: + progress_func('p,q\n') + p = q = 1 + while number.size(p*q) < bits: + # Note that q might be one bit longer than p if somebody specifies an odd + # number of bits for the key. (Why would anyone do that? You don't get + # more security.) + p = pubkey.getStrongPrime(bits>>1, obj.e, 1e-12, randfunc) + q = pubkey.getStrongPrime(bits - (bits>>1), obj.e, 1e-12, randfunc) + + # It's OK for p to be larger than q, but let's be + # kind to the function that will invert it for + # th calculation of u. + if p > q: + (p, q)=(q, p) + obj.p = p + obj.q = q + + if progress_func: + progress_func('u\n') + obj.u = pubkey.inverse(obj.p, obj.q) + obj.n = obj.p*obj.q + + if progress_func: + progress_func('d\n') + obj.d=pubkey.inverse(obj.e, (obj.p-1)*(obj.q-1)) + + assert bits <= 1+obj.size(), "Generated key is too small" + + return obj + +class RSAobj(pubkey.pubkey): + + def size(self): + """size() : int + Return the maximum number of bits that can be handled by this key. + """ + return number.size(self.n) - 1 + diff --git a/frozen_deps/Crypto/PublicKey/__init__.py b/frozen_deps/Crypto/PublicKey/__init__.py new file mode 100644 index 0000000..503809f --- /dev/null +++ b/frozen_deps/Crypto/PublicKey/__init__.py @@ -0,0 +1,41 @@ +# -*- coding: utf-8 -*- +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== + +"""Public-key encryption and signature algorithms. + +Public-key encryption uses two different keys, one for encryption and +one for decryption. The encryption key can be made public, and the +decryption key is kept private. Many public-key algorithms can also +be used to sign messages, and some can *only* be used for signatures. + +======================== ============================================= +Module Description +======================== ============================================= +Crypto.PublicKey.DSA Digital Signature Algorithm (Signature only) +Crypto.PublicKey.ElGamal (Signing and encryption) +Crypto.PublicKey.RSA (Signing, encryption, and blinding) +======================== ============================================= + +:undocumented: _DSA, _RSA, _fastmath, _slowmath, pubkey +""" + +__all__ = ['RSA', 'DSA', 'ElGamal'] +__revision__ = "$Id$" + diff --git a/frozen_deps/Crypto/PublicKey/_fastmath.cpython-38-x86_64-linux-gnu.so b/frozen_deps/Crypto/PublicKey/_fastmath.cpython-38-x86_64-linux-gnu.so new file mode 100755 index 0000000..f0fe708 Binary files /dev/null and b/frozen_deps/Crypto/PublicKey/_fastmath.cpython-38-x86_64-linux-gnu.so differ diff --git a/frozen_deps/Crypto/PublicKey/_slowmath.py b/frozen_deps/Crypto/PublicKey/_slowmath.py new file mode 100644 index 0000000..c87bdd2 --- /dev/null +++ b/frozen_deps/Crypto/PublicKey/_slowmath.py @@ -0,0 +1,187 @@ +# -*- coding: utf-8 -*- +# +# PubKey/RSA/_slowmath.py : Pure Python implementation of the RSA portions of _fastmath +# +# Written in 2008 by Dwayne C. Litzenberger +# +# =================================================================== +# The contents of this file are dedicated to the public domain. To +# the extent that dedication to the public domain is not available, +# everyone is granted a worldwide, perpetual, royalty-free, +# non-exclusive license to exercise all rights associated with the +# contents of this file for any purpose whatsoever. +# No rights are reserved. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# =================================================================== + +"""Pure Python implementation of the RSA-related portions of Crypto.PublicKey._fastmath.""" + +__revision__ = "$Id$" + +__all__ = ['rsa_construct'] + +import sys + +if sys.version_info[0] == 2 and sys.version_info[1] == 1: + from Crypto.Util.py21compat import * +from Crypto.Util.number import size, inverse, GCD + +class error(Exception): + pass + +class _RSAKey(object): + def _blind(self, m, r): + # compute r**e * m (mod n) + return m * pow(r, self.e, self.n) + + def _unblind(self, m, r): + # compute m / r (mod n) + return inverse(r, self.n) * m % self.n + + def _decrypt(self, c): + # compute c**d (mod n) + if not self.has_private(): + raise TypeError("No private key") + if (hasattr(self,'p') and hasattr(self,'q') and hasattr(self,'u')): + m1 = pow(c, self.d % (self.p-1), self.p) + m2 = pow(c, self.d % (self.q-1), self.q) + h = m2 - m1 + if (h<0): + h = h + self.q + h = h*self.u % self.q + return h*self.p+m1 + return pow(c, self.d, self.n) + + def _encrypt(self, m): + # compute m**d (mod n) + return pow(m, self.e, self.n) + + def _sign(self, m): # alias for _decrypt + if not self.has_private(): + raise TypeError("No private key") + return self._decrypt(m) + + def _verify(self, m, sig): + return self._encrypt(sig) == m + + def has_private(self): + return hasattr(self, 'd') + + def size(self): + """Return the maximum number of bits that can be encrypted""" + return size(self.n) - 1 + +def rsa_construct(n, e, d=None, p=None, q=None, u=None): + """Construct an RSAKey object""" + assert isinstance(n, int) + assert isinstance(e, int) + assert isinstance(d, (int, type(None))) + assert isinstance(p, (int, type(None))) + assert isinstance(q, (int, type(None))) + assert isinstance(u, (int, type(None))) + obj = _RSAKey() + obj.n = n + obj.e = e + if d is None: + return obj + obj.d = d + if p is not None and q is not None: + obj.p = p + obj.q = q + else: + # Compute factors p and q from the private exponent d. + # We assume that n has no more than two factors. + # See 8.2.2(i) in Handbook of Applied Cryptography. + ktot = d*e-1 + # The quantity d*e-1 is a multiple of phi(n), even, + # and can be represented as t*2^s. + t = ktot + while t%2==0: + t=divmod(t,2)[0] + # Cycle through all multiplicative inverses in Zn. + # The algorithm is non-deterministic, but there is a 50% chance + # any candidate a leads to successful factoring. + # See "Digitalized Signatures and Public Key Functions as Intractable + # as Factorization", M. Rabin, 1979 + spotted = 0 + a = 2 + while not spotted and a<100: + k = t + # Cycle through all values a^{t*2^i}=a^k + while k