From c4d90bf4ea0c5b7a016028ed994de19638d3113b Mon Sep 17 00:00:00 2001 From: Determinant Date: Tue, 17 Nov 2020 20:04:09 -0500 Subject: support saving as a keystore file --- frozen_deps/Crypto/PublicKey/_slowmath.py | 187 ------------------------------ 1 file changed, 187 deletions(-) delete mode 100644 frozen_deps/Crypto/PublicKey/_slowmath.py (limited to 'frozen_deps/Crypto/PublicKey/_slowmath.py') diff --git a/frozen_deps/Crypto/PublicKey/_slowmath.py b/frozen_deps/Crypto/PublicKey/_slowmath.py deleted file mode 100644 index c87bdd2..0000000 --- a/frozen_deps/Crypto/PublicKey/_slowmath.py +++ /dev/null @@ -1,187 +0,0 @@ -# -*- coding: utf-8 -*- -# -# PubKey/RSA/_slowmath.py : Pure Python implementation of the RSA portions of _fastmath -# -# Written in 2008 by Dwayne C. Litzenberger -# -# =================================================================== -# The contents of this file are dedicated to the public domain. To -# the extent that dedication to the public domain is not available, -# everyone is granted a worldwide, perpetual, royalty-free, -# non-exclusive license to exercise all rights associated with the -# contents of this file for any purpose whatsoever. -# No rights are reserved. -# -# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS -# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN -# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN -# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -# SOFTWARE. -# =================================================================== - -"""Pure Python implementation of the RSA-related portions of Crypto.PublicKey._fastmath.""" - -__revision__ = "$Id$" - -__all__ = ['rsa_construct'] - -import sys - -if sys.version_info[0] == 2 and sys.version_info[1] == 1: - from Crypto.Util.py21compat import * -from Crypto.Util.number import size, inverse, GCD - -class error(Exception): - pass - -class _RSAKey(object): - def _blind(self, m, r): - # compute r**e * m (mod n) - return m * pow(r, self.e, self.n) - - def _unblind(self, m, r): - # compute m / r (mod n) - return inverse(r, self.n) * m % self.n - - def _decrypt(self, c): - # compute c**d (mod n) - if not self.has_private(): - raise TypeError("No private key") - if (hasattr(self,'p') and hasattr(self,'q') and hasattr(self,'u')): - m1 = pow(c, self.d % (self.p-1), self.p) - m2 = pow(c, self.d % (self.q-1), self.q) - h = m2 - m1 - if (h<0): - h = h + self.q - h = h*self.u % self.q - return h*self.p+m1 - return pow(c, self.d, self.n) - - def _encrypt(self, m): - # compute m**d (mod n) - return pow(m, self.e, self.n) - - def _sign(self, m): # alias for _decrypt - if not self.has_private(): - raise TypeError("No private key") - return self._decrypt(m) - - def _verify(self, m, sig): - return self._encrypt(sig) == m - - def has_private(self): - return hasattr(self, 'd') - - def size(self): - """Return the maximum number of bits that can be encrypted""" - return size(self.n) - 1 - -def rsa_construct(n, e, d=None, p=None, q=None, u=None): - """Construct an RSAKey object""" - assert isinstance(n, int) - assert isinstance(e, int) - assert isinstance(d, (int, type(None))) - assert isinstance(p, (int, type(None))) - assert isinstance(q, (int, type(None))) - assert isinstance(u, (int, type(None))) - obj = _RSAKey() - obj.n = n - obj.e = e - if d is None: - return obj - obj.d = d - if p is not None and q is not None: - obj.p = p - obj.q = q - else: - # Compute factors p and q from the private exponent d. - # We assume that n has no more than two factors. - # See 8.2.2(i) in Handbook of Applied Cryptography. - ktot = d*e-1 - # The quantity d*e-1 is a multiple of phi(n), even, - # and can be represented as t*2^s. - t = ktot - while t%2==0: - t=divmod(t,2)[0] - # Cycle through all multiplicative inverses in Zn. - # The algorithm is non-deterministic, but there is a 50% chance - # any candidate a leads to successful factoring. - # See "Digitalized Signatures and Public Key Functions as Intractable - # as Factorization", M. Rabin, 1979 - spotted = 0 - a = 2 - while not spotted and a<100: - k = t - # Cycle through all values a^{t*2^i}=a^k - while k