import qualified Data.Map as Map import Data.Map (Map) import Data.List (foldl', sortBy) import Control.Monad (foldM, mapM) data Graph a b = Graph [a] [(a, a, b)] deriving (Show, Eq) graph = Graph [1,2,3,4,5] [(1,2,12),(1,3,34),(1,5,78),(2,4,55), (2,5,32),(3,4,61),(3,5,44),(4,5,93)] newElem :: Ord a => Map a a -> a -> Maybe (Map a a) findLead :: Ord a => Map a a -> a -> Maybe (Map a a, a) unionSet :: Ord a => Map a a -> a -> a -> Maybe (Map a a) newElem m v = Just (Map.insert v v m) findLead m v = do pv <- Map.lookup v m if pv == v then return (m, v) else do (m', v') <- findLead m pv return (Map.adjust (\_ -> v') v m', v') unionSet m u v = do (m', lu) <- findLead m u (m'', lv) <- findLead m' v return (Map.adjust (\_ -> lv) lu m'') -- The above lines implement a monadic union-find-set, e.g: -- z = do m <- newElem Map.empty 1 -- m1 <- newElem m 2 -- m2 <- newElem m1 3 -- m3 <- newElem m2 4 -- m4 <- unionSet m3 1 2 -- m5 <- unionSet m4 3 4 -- m6 <- unionSet m5 2 3 -- (m7, _) <- findLead m6 1 -- return m7 kruskal :: (Ord a, Ord b, Num b) => Graph a b -> Maybe b kruskal (Graph [] _) = Nothing kruskal (Graph v e) = span (sortBy (\(_, _, c) (_, _, c') -> c `compare` c') e) (foldM (\acc u -> newElem acc u) Map.empty v) 0 where span [] comp0 cost = return cost span ((u, v, c):es) comp0 cost = do comp <- comp0 (comp', lu) <- findLead comp u (comp'', lv) <- findLead comp' v comp''' <- unionSet comp'' u v let (compf, cost') = if lu == lv then (comp'', cost) else (comp''', cost + c) span es (return compf) cost'