// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "errors" "math" "math/big" "github.com/ava-labs/coreth/core/vm" "github.com/ava-labs/coreth/params" "github.com/ava-labs/go-ethereum/common" "github.com/ava-labs/go-ethereum/log" ) var ( errInsufficientBalanceForGas = errors.New("insufficient balance to pay for gas") ) /* The State Transitioning Model A state transition is a change made when a transaction is applied to the current world state The state transitioning model does all the necessary work to work out a valid new state root. 1) Nonce handling 2) Pre pay gas 3) Create a new state object if the recipient is \0*32 4) Value transfer == If contract creation == 4a) Attempt to run transaction data 4b) If valid, use result as code for the new state object == end == 5) Run Script section 6) Derive new state root */ type StateTransition struct { gp *GasPool msg Message gas uint64 gasPrice *big.Int initialGas uint64 value *big.Int data []byte state vm.StateDB evm *vm.EVM } // Message represents a message sent to a contract. type Message interface { From() common.Address //FromFrontier() (common.Address, error) To() *common.Address GasPrice() *big.Int Gas() uint64 Value() *big.Int Nonce() uint64 CheckNonce() bool Data() []byte } // IntrinsicGas computes the 'intrinsic gas' for a message with the given data. func IntrinsicGas(data []byte, contractCreation, isEIP155 bool, isEIP2028 bool) (uint64, error) { // Set the starting gas for the raw transaction var gas uint64 if contractCreation && isEIP155 { gas = params.TxGasContractCreation } else { gas = params.TxGas } // Bump the required gas by the amount of transactional data if len(data) > 0 { // Zero and non-zero bytes are priced differently var nz uint64 for _, byt := range data { if byt != 0 { nz++ } } // Make sure we don't exceed uint64 for all data combinations nonZeroGas := params.TxDataNonZeroGasFrontier if isEIP2028 { nonZeroGas = params.TxDataNonZeroGasEIP2028 } if (math.MaxUint64-gas)/nonZeroGas < nz { return 0, vm.ErrOutOfGas } gas += nz * nonZeroGas z := uint64(len(data)) - nz if (math.MaxUint64-gas)/params.TxDataZeroGas < z { return 0, vm.ErrOutOfGas } gas += z * params.TxDataZeroGas } return gas, nil } // NewStateTransition initialises and returns a new state transition object. func NewStateTransition(evm *vm.EVM, msg Message, gp *GasPool) *StateTransition { return &StateTransition{ gp: gp, evm: evm, msg: msg, gasPrice: msg.GasPrice(), value: msg.Value(), data: msg.Data(), state: evm.StateDB, } } // ApplyMessage computes the new state by applying the given message // against the old state within the environment. // // ApplyMessage returns the bytes returned by any EVM execution (if it took place), // the gas used (which includes gas refunds) and an error if it failed. An error always // indicates a core error meaning that the message would always fail for that particular // state and would never be accepted within a block. func ApplyMessage(evm *vm.EVM, msg Message, gp *GasPool) ([]byte, uint64, bool, error) { return NewStateTransition(evm, msg, gp).TransitionDb() } // to returns the recipient of the message. func (st *StateTransition) to() common.Address { if st.msg == nil || st.msg.To() == nil /* contract creation */ { return common.Address{} } return *st.msg.To() } func (st *StateTransition) useGas(amount uint64) error { if st.gas < amount { return vm.ErrOutOfGas } st.gas -= amount return nil } func (st *StateTransition) buyGas() error { mgval := new(big.Int).Mul(new(big.Int).SetUint64(st.msg.Gas()), st.gasPrice) if st.state.GetBalance(st.msg.From()).Cmp(mgval) < 0 { return errInsufficientBalanceForGas } if err := st.gp.SubGas(st.msg.Gas()); err != nil { return err } st.gas += st.msg.Gas() st.initialGas = st.msg.Gas() st.state.SubBalance(st.msg.From(), mgval) return nil } func (st *StateTransition) preCheck() error { // Make sure this transaction's nonce is correct. if st.msg.CheckNonce() { nonce := st.state.GetNonce(st.msg.From()) if nonce < st.msg.Nonce() { return ErrNonceTooHigh } else if nonce > st.msg.Nonce() { return ErrNonceTooLow } } return st.buyGas() } // TransitionDb will transition the state by applying the current message and // returning the result including the used gas. It returns an error if failed. // An error indicates a consensus issue. func (st *StateTransition) TransitionDb() (ret []byte, usedGas uint64, failed bool, err error) { if err = st.preCheck(); err != nil { return } msg := st.msg sender := vm.AccountRef(msg.From()) homestead := st.evm.ChainConfig().IsHomestead(st.evm.BlockNumber) istanbul := st.evm.ChainConfig().IsIstanbul(st.evm.BlockNumber) contractCreation := msg.To() == nil // Pay intrinsic gas gas, err := IntrinsicGas(st.data, contractCreation, homestead, istanbul) if err != nil { return nil, 0, false, err } if err = st.useGas(gas); err != nil { return nil, 0, false, err } var ( evm = st.evm // vm errors do not effect consensus and are therefor // not assigned to err, except for insufficient balance // error. vmerr error ) if contractCreation { ret, _, st.gas, vmerr = evm.Create(sender, st.data, st.gas, st.value) } else { // Increment the nonce for the next transaction st.state.SetNonce(msg.From(), st.state.GetNonce(sender.Address())+1) ret, st.gas, vmerr = evm.Call(sender, st.to(), st.data, st.gas, st.value) } if vmerr != nil { log.Debug("VM returned with error", "err", vmerr) // The only possible consensus-error would be if there wasn't // sufficient balance to make the transfer happen. The first // balance transfer may never fail. if vmerr == vm.ErrInsufficientBalance { return nil, 0, false, vmerr } } st.refundGas() st.state.AddBalance(st.evm.Coinbase, new(big.Int).Mul(new(big.Int).SetUint64(st.gasUsed()), st.gasPrice)) return ret, st.gasUsed(), vmerr != nil, err } func (st *StateTransition) refundGas() { // Apply refund counter, capped to half of the used gas. refund := st.gasUsed() / 2 if refund > st.state.GetRefund() { refund = st.state.GetRefund() } st.gas += refund // Return ETH for remaining gas, exchanged at the original rate. remaining := new(big.Int).Mul(new(big.Int).SetUint64(st.gas), st.gasPrice) st.state.AddBalance(st.msg.From(), remaining) // Also return remaining gas to the block gas counter so it is // available for the next transaction. st.gp.AddGas(st.gas) } // gasUsed returns the amount of gas used up by the state transition. func (st *StateTransition) gasUsed() uint64 { return st.initialGas - st.gas }