// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. // Package state provides a caching layer atop the Ethereum state trie. package state import ( "errors" "fmt" "math/big" "sort" "time" "github.com/ava-labs/coreth/core/rawdb" "github.com/ava-labs/coreth/core/state/snapshot" "github.com/ava-labs/coreth/core/types" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" ) type revision struct { id int journalIndex int } var ( // emptyRoot is the known root hash of an empty trie. emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") zeroRoot = common.HexToHash("0000000000000000000000000000000000000000000000000000000000000000") ) type proofList [][]byte func (n *proofList) Put(key []byte, value []byte) error { *n = append(*n, value) return nil } func (n *proofList) Delete(key []byte) error { panic("not supported") } // StateDB structs within the ethereum protocol are used to store anything // within the merkle trie. StateDBs take care of caching and storing // nested states. It's the general query interface to retrieve: // * Contracts // * Accounts type StateDB struct { db Database trie Trie snaps *snapshot.Tree snap snapshot.Snapshot snapDestructs map[common.Hash]struct{} snapAccounts map[common.Hash][]byte snapStorage map[common.Hash]map[common.Hash][]byte // This map holds 'live' objects, which will get modified while processing a state transition. stateObjects map[common.Address]*stateObject stateObjectsPending map[common.Address]struct{} // State objects finalized but not yet written to the trie stateObjectsDirty map[common.Address]struct{} // State objects modified in the current execution // DB error. // State objects are used by the consensus core and VM which are // unable to deal with database-level errors. Any error that occurs // during a database read is memoized here and will eventually be returned // by StateDB.Commit. dbErr error // The refund counter, also used by state transitioning. refund uint64 thash, bhash common.Hash txIndex int logs map[common.Hash][]*types.Log logSize uint preimages map[common.Hash][]byte // Journal of state modifications. This is the backbone of // Snapshot and RevertToSnapshot. journal *journal validRevisions []revision nextRevisionId int // Measurements gathered during execution for debugging purposes AccountReads time.Duration AccountHashes time.Duration AccountUpdates time.Duration AccountCommits time.Duration StorageReads time.Duration StorageHashes time.Duration StorageUpdates time.Duration StorageCommits time.Duration SnapshotAccountReads time.Duration SnapshotStorageReads time.Duration SnapshotCommits time.Duration } // New creates a new state from a given trie. func New(root common.Hash, db Database, snaps *snapshot.Tree) (*StateDB, error) { tr, err := db.OpenTrie(root) if err != nil { return nil, err } sdb := &StateDB{ db: db, trie: tr, snaps: snaps, stateObjects: make(map[common.Address]*stateObject), stateObjectsPending: make(map[common.Address]struct{}), stateObjectsDirty: make(map[common.Address]struct{}), logs: make(map[common.Hash][]*types.Log), preimages: make(map[common.Hash][]byte), journal: newJournal(), } if sdb.snaps != nil { if sdb.snap = sdb.snaps.Snapshot(root); sdb.snap != nil { sdb.snapDestructs = make(map[common.Hash]struct{}) sdb.snapAccounts = make(map[common.Hash][]byte) sdb.snapStorage = make(map[common.Hash]map[common.Hash][]byte) } } return sdb, nil } // setError remembers the first non-nil error it is called with. func (s *StateDB) setError(err error) { if s.dbErr == nil { s.dbErr = err } } func (s *StateDB) Error() error { return s.dbErr } // Reset clears out all ephemeral state objects from the state db, but keeps // the underlying state trie to avoid reloading data for the next operations. func (s *StateDB) Reset(root common.Hash) error { tr, err := s.db.OpenTrie(root) if err != nil { return err } s.trie = tr s.stateObjects = make(map[common.Address]*stateObject) s.stateObjectsPending = make(map[common.Address]struct{}) s.stateObjectsDirty = make(map[common.Address]struct{}) s.thash = common.Hash{} s.bhash = common.Hash{} s.txIndex = 0 s.logs = make(map[common.Hash][]*types.Log) s.logSize = 0 s.preimages = make(map[common.Hash][]byte) s.clearJournalAndRefund() if s.snaps != nil { s.snapAccounts, s.snapDestructs, s.snapStorage = nil, nil, nil if s.snap = s.snaps.Snapshot(root); s.snap != nil { s.snapDestructs = make(map[common.Hash]struct{}) s.snapAccounts = make(map[common.Hash][]byte) s.snapStorage = make(map[common.Hash]map[common.Hash][]byte) } } return nil } func (s *StateDB) AddLog(log *types.Log) { s.journal.append(addLogChange{txhash: s.thash}) log.TxHash = s.thash log.BlockHash = s.bhash log.TxIndex = uint(s.txIndex) log.Index = s.logSize s.logs[s.thash] = append(s.logs[s.thash], log) s.logSize++ } func (s *StateDB) GetLogs(hash common.Hash) []*types.Log { return s.logs[hash] } func (s *StateDB) Logs() []*types.Log { var logs []*types.Log for _, lgs := range s.logs { logs = append(logs, lgs...) } return logs } // AddPreimage records a SHA3 preimage seen by the VM. func (s *StateDB) AddPreimage(hash common.Hash, preimage []byte) { if _, ok := s.preimages[hash]; !ok { s.journal.append(addPreimageChange{hash: hash}) pi := make([]byte, len(preimage)) copy(pi, preimage) s.preimages[hash] = pi } } // Preimages returns a list of SHA3 preimages that have been submitted. func (s *StateDB) Preimages() map[common.Hash][]byte { return s.preimages } // AddRefund adds gas to the refund counter func (s *StateDB) AddRefund(gas uint64) { s.journal.append(refundChange{prev: s.refund}) s.refund += gas } // SubRefund removes gas from the refund counter. // This method will panic if the refund counter goes below zero func (s *StateDB) SubRefund(gas uint64) { s.journal.append(refundChange{prev: s.refund}) if gas > s.refund { panic(fmt.Sprintf("Refund counter below zero (gas: %d > refund: %d)", gas, s.refund)) } s.refund -= gas } // Exist reports whether the given account address exists in the state. // Notably this also returns true for suicided accounts. func (s *StateDB) Exist(addr common.Address) bool { return s.getStateObject(addr) != nil } // Empty returns whether the state object is either non-existent // or empty according to the EIP161 specification (balance = nonce = code = 0) func (s *StateDB) Empty(addr common.Address) bool { so := s.getStateObject(addr) return so == nil || so.empty() } // GetBalance retrieves the balance from the given address or 0 if object not found func (s *StateDB) GetBalance(addr common.Address) *big.Int { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.Balance() } return common.Big0 } // Retrieve the balance from the given address or 0 if object not found func (self *StateDB) GetBalanceMultiCoin(addr common.Address, coinID common.Hash) *big.Int { stateObject := self.getStateObject(addr) if stateObject != nil { return stateObject.BalanceMultiCoin(coinID, self.db) } return common.Big0 } //func (self *StateDB) EnableMultiCoin(addr common.Address) error { // stateObject := self.GetOrNewStateObject(addr) // if stateObject.data.Root != emptyRoot && stateObject.data.Root != zeroRoot { // return errors.New(fmt.Sprintf("not a fresh account: %s", stateObject.data.Root.Hex())) // } // if !stateObject.EnableMultiCoin() { // return errors.New("multi-coin mode already enabled") // } // log.Debug(fmt.Sprintf("enabled MC for %s", addr.Hex())) // return nil //} // //func (self *StateDB) ForceEnableMultiCoin(addr common.Address) { // stateObject := self.GetOrNewStateObject(addr) // stateObject.EnableMultiCoin() //} func (self *StateDB) IsMultiCoin(addr common.Address) bool { return true //stateObject := self.getStateObject(addr) //if stateObject != nil { // return stateObject.IsMultiCoin() //} //return false } func (s *StateDB) GetNonce(addr common.Address) uint64 { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.Nonce() } return 0 } // TxIndex returns the current transaction index set by Prepare. func (s *StateDB) TxIndex() int { return s.txIndex } // BlockHash returns the current block hash set by Prepare. func (s *StateDB) BlockHash() common.Hash { return s.bhash } func (s *StateDB) GetCode(addr common.Address) []byte { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.Code(s.db) } return nil } func (s *StateDB) GetCodeSize(addr common.Address) int { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.CodeSize(s.db) } return 0 } func (s *StateDB) GetCodeHash(addr common.Address) common.Hash { stateObject := s.getStateObject(addr) if stateObject == nil { return common.Hash{} } return common.BytesToHash(stateObject.CodeHash()) } // GetState retrieves a value from the given account's storage trie. func (s *StateDB) GetState(addr common.Address, hash common.Hash) common.Hash { stateObject := s.getStateObject(addr) if stateObject != nil { // NOTE: last-minute fix: just universally enable MC //if stateObject.data.IsMultiCoin { NormalizeStateKey(&hash) //} return stateObject.GetState(s.db, hash) } return common.Hash{} } // GetProof returns the MerkleProof for a given Account func (s *StateDB) GetProof(a common.Address) ([][]byte, error) { var proof proofList err := s.trie.Prove(crypto.Keccak256(a.Bytes()), 0, &proof) return [][]byte(proof), err } // GetStorageProof returns the StorageProof for given key func (s *StateDB) GetStorageProof(a common.Address, key common.Hash) ([][]byte, error) { var proof proofList trie := s.StorageTrie(a) if trie == nil { return proof, errors.New("storage trie for requested address does not exist") } err := trie.Prove(crypto.Keccak256(key.Bytes()), 0, &proof) return [][]byte(proof), err } // GetCommittedState retrieves a value from the given account's committed storage trie. func (s *StateDB) GetCommittedState(addr common.Address, hash common.Hash) common.Hash { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.GetCommittedState(s.db, hash) } return common.Hash{} } // Database retrieves the low level database supporting the lower level trie ops. func (s *StateDB) Database() Database { return s.db } // StorageTrie returns the storage trie of an account. // The return value is a copy and is nil for non-existent accounts. func (s *StateDB) StorageTrie(addr common.Address) Trie { stateObject := s.getStateObject(addr) if stateObject == nil { return nil } cpy := stateObject.deepCopy(s) cpy.updateTrie(s.db) return cpy.getTrie(s.db) } func (s *StateDB) HasSuicided(addr common.Address) bool { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.suicided } return false } /* * SETTERS */ // AddBalance adds amount to the account associated with addr. func (s *StateDB) AddBalance(addr common.Address, amount *big.Int) { stateObject := s.GetOrNewStateObject(addr) if stateObject != nil { stateObject.AddBalance(amount) } } // SubBalance subtracts amount from the account associated with addr. func (s *StateDB) SubBalance(addr common.Address, amount *big.Int) { stateObject := s.GetOrNewStateObject(addr) if stateObject != nil { stateObject.SubBalance(amount) } } func (s *StateDB) SetBalance(addr common.Address, amount *big.Int) { stateObject := s.GetOrNewStateObject(addr) if stateObject != nil { stateObject.SetBalance(amount) } } // AddBalance adds amount to the account associated with addr. func (s *StateDB) AddBalanceMultiCoin(addr common.Address, coinID common.Hash, amount *big.Int) { stateObject := s.GetOrNewStateObject(addr) if stateObject != nil { stateObject.AddBalanceMultiCoin(coinID, amount, s.db) } } // SubBalance subtracts amount from the account associated with addr. func (s *StateDB) SubBalanceMultiCoin(addr common.Address, coinID common.Hash, amount *big.Int) { stateObject := s.GetOrNewStateObject(addr) if stateObject != nil { stateObject.SubBalanceMultiCoin(coinID, amount, s.db) } } func (s *StateDB) SetBalanceMultiCoin(addr common.Address, coinID common.Hash, amount *big.Int) { stateObject := s.GetOrNewStateObject(addr) if stateObject != nil { stateObject.SetBalanceMultiCoin(coinID, amount, s.db) } } func (s *StateDB) SetNonce(addr common.Address, nonce uint64) { stateObject := s.GetOrNewStateObject(addr) if stateObject != nil { stateObject.SetNonce(nonce) } } func (s *StateDB) SetCode(addr common.Address, code []byte) { stateObject := s.GetOrNewStateObject(addr) if stateObject != nil { stateObject.SetCode(crypto.Keccak256Hash(code), code) } } func (s *StateDB) SetState(addr common.Address, key, value common.Hash) (res error) { res = nil stateObject := s.GetOrNewStateObject(addr) if stateObject != nil { // NOTE: last-minute fix: just universally enable MC //if stateObject.data.IsMultiCoin { NormalizeStateKey(&key) //} stateObject.SetState(s.db, key, value) } return } // SetStorage replaces the entire storage for the specified account with given // storage. This function should only be used for debugging. func (s *StateDB) SetStorage(addr common.Address, storage map[common.Hash]common.Hash) { stateObject := s.GetOrNewStateObject(addr) if stateObject != nil { stateObject.SetStorage(storage) } } // Suicide marks the given account as suicided. // This clears the account balance. // // The account's state object is still available until the state is committed, // getStateObject will return a non-nil account after Suicide. func (s *StateDB) Suicide(addr common.Address) bool { stateObject := s.getStateObject(addr) if stateObject == nil { return false } s.journal.append(suicideChange{ account: &addr, prev: stateObject.suicided, prevbalance: new(big.Int).Set(stateObject.Balance()), }) stateObject.markSuicided() stateObject.data.Balance = new(big.Int) return true } // // Setting, updating & deleting state object methods. // // updateStateObject writes the given object to the trie. func (s *StateDB) updateStateObject(obj *stateObject) { // Track the amount of time wasted on updating the account from the trie if metrics.EnabledExpensive { defer func(start time.Time) { s.AccountUpdates += time.Since(start) }(time.Now()) } // Encode the account and update the account trie addr := obj.Address() data, err := rlp.EncodeToBytes(obj) if err != nil { panic(fmt.Errorf("can't encode object at %x: %v", addr[:], err)) } if err = s.trie.TryUpdate(addr[:], data); err != nil { s.setError(fmt.Errorf("updateStateObject (%x) error: %v", addr[:], err)) } // If state snapshotting is active, cache the data til commit. Note, this // update mechanism is not symmetric to the deletion, because whereas it is // enough to track account updates at commit time, deletions need tracking // at transaction boundary level to ensure we capture state clearing. if s.snap != nil { s.snapAccounts[obj.addrHash] = snapshot.SlimAccountRLP(obj.data.Nonce, obj.data.Balance, obj.data.Root, obj.data.CodeHash, obj.data.IsMultiCoin) } } // deleteStateObject removes the given object from the state trie. func (s *StateDB) deleteStateObject(obj *stateObject) { // Track the amount of time wasted on deleting the account from the trie if metrics.EnabledExpensive { defer func(start time.Time) { s.AccountUpdates += time.Since(start) }(time.Now()) } // Delete the account from the trie addr := obj.Address() if err := s.trie.TryDelete(addr[:]); err != nil { s.setError(fmt.Errorf("deleteStateObject (%x) error: %v", addr[:], err)) } } // getStateObject retrieves a state object given by the address, returning nil if // the object is not found or was deleted in this execution context. If you need // to differentiate between non-existent/just-deleted, use getDeletedStateObject. func (s *StateDB) getStateObject(addr common.Address) *stateObject { if obj := s.getDeletedStateObject(addr); obj != nil && !obj.deleted { return obj } return nil } // getDeletedStateObject is similar to getStateObject, but instead of returning // nil for a deleted state object, it returns the actual object with the deleted // flag set. This is needed by the state journal to revert to the correct s- // destructed object instead of wiping all knowledge about the state object. func (s *StateDB) getDeletedStateObject(addr common.Address) *stateObject { // Prefer live objects if any is available if obj := s.stateObjects[addr]; obj != nil { return obj } // If no live objects are available, attempt to use snapshots var ( data *Account err error ) if s.snap != nil { if metrics.EnabledExpensive { defer func(start time.Time) { s.SnapshotAccountReads += time.Since(start) }(time.Now()) } var acc *snapshot.Account if acc, err = s.snap.Account(crypto.Keccak256Hash(addr.Bytes())); err == nil { if acc == nil { return nil } data = &Account{ Nonce: acc.Nonce, Balance: acc.Balance, CodeHash: acc.CodeHash, IsMultiCoin: acc.IsMultiCoin, Root: common.BytesToHash(acc.Root), } if len(data.CodeHash) == 0 { data.CodeHash = emptyCodeHash } if data.Root == (common.Hash{}) { data.Root = emptyRoot } } } // If snapshot unavailable or reading from it failed, load from the database if s.snap == nil || err != nil { if metrics.EnabledExpensive { defer func(start time.Time) { s.AccountReads += time.Since(start) }(time.Now()) } enc, err := s.trie.TryGet(addr.Bytes()) if err != nil { s.setError(fmt.Errorf("getDeleteStateObject (%x) error: %v", addr.Bytes(), err)) return nil } if len(enc) == 0 { return nil } data = new(Account) if err := rlp.DecodeBytes(enc, data); err != nil { log.Error("Failed to decode state object", "addr", addr, "err", err) return nil } } // Insert into the live set obj := newObject(s, addr, *data) s.setStateObject(obj) return obj } func (s *StateDB) setStateObject(object *stateObject) { s.stateObjects[object.Address()] = object } // GetOrNewStateObject retrieves a state object or create a new state object if nil. func (s *StateDB) GetOrNewStateObject(addr common.Address) *stateObject { stateObject := s.getStateObject(addr) if stateObject == nil { stateObject, _ = s.createObject(addr) } return stateObject } // createObject creates a new state object. If there is an existing account with // the given address, it is overwritten and returned as the second return value. func (s *StateDB) createObject(addr common.Address) (newobj, prev *stateObject) { prev = s.getDeletedStateObject(addr) // Note, prev might have been deleted, we need that! var prevdestruct bool if s.snap != nil && prev != nil { _, prevdestruct = s.snapDestructs[prev.addrHash] if !prevdestruct { s.snapDestructs[prev.addrHash] = struct{}{} } } newobj = newObject(s, addr, Account{}) newobj.setNonce(0) // sets the object to dirty if prev == nil { s.journal.append(createObjectChange{account: &addr}) } else { s.journal.append(resetObjectChange{prev: prev, prevdestruct: prevdestruct}) } s.setStateObject(newobj) if prev != nil && !prev.deleted { return newobj, prev } return newobj, nil } // CreateAccount explicitly creates a state object. If a state object with the address // already exists the balance is carried over to the new account. // // CreateAccount is called during the EVM CREATE operation. The situation might arise that // a contract does the following: // // 1. sends funds to sha(account ++ (nonce + 1)) // 2. tx_create(sha(account ++ nonce)) (note that this gets the address of 1) // // Carrying over the balance ensures that Ether doesn't disappear. func (s *StateDB) CreateAccount(addr common.Address) { newObj, prev := s.createObject(addr) if prev != nil { newObj.setBalance(prev.data.Balance) } } func (db *StateDB) ForEachStorage(addr common.Address, cb func(key, value common.Hash) bool) error { so := db.getStateObject(addr) if so == nil { return nil } it := trie.NewIterator(so.getTrie(db.db).NodeIterator(nil)) for it.Next() { key := common.BytesToHash(db.trie.GetKey(it.Key)) if value, dirty := so.dirtyStorage[key]; dirty { if !cb(key, value) { return nil } continue } if len(it.Value) > 0 { _, content, _, err := rlp.Split(it.Value) if err != nil { return err } if !cb(key, common.BytesToHash(content)) { return nil } } } return nil } // Copy creates a deep, independent copy of the state. // Snapshots of the copied state cannot be applied to the copy. func (s *StateDB) Copy() *StateDB { // Copy all the basic fields, initialize the memory ones state := &StateDB{ db: s.db, trie: s.db.CopyTrie(s.trie), stateObjects: make(map[common.Address]*stateObject, len(s.journal.dirties)), stateObjectsPending: make(map[common.Address]struct{}, len(s.stateObjectsPending)), stateObjectsDirty: make(map[common.Address]struct{}, len(s.journal.dirties)), refund: s.refund, logs: make(map[common.Hash][]*types.Log, len(s.logs)), logSize: s.logSize, preimages: make(map[common.Hash][]byte, len(s.preimages)), journal: newJournal(), } // Copy the dirty states, logs, and preimages for addr := range s.journal.dirties { // As documented [here](https://github.com/ethereum/go-ethereum/pull/16485#issuecomment-380438527), // and in the Finalise-method, there is a case where an object is in the journal but not // in the stateObjects: OOG after touch on ripeMD prior to Byzantium. Thus, we need to check for // nil if object, exist := s.stateObjects[addr]; exist { // Even though the original object is dirty, we are not copying the journal, // so we need to make sure that anyside effect the journal would have caused // during a commit (or similar op) is already applied to the copy. state.stateObjects[addr] = object.deepCopy(state) state.stateObjectsDirty[addr] = struct{}{} // Mark the copy dirty to force internal (code/state) commits state.stateObjectsPending[addr] = struct{}{} // Mark the copy pending to force external (account) commits } } // Above, we don't copy the actual journal. This means that if the copy is copied, the // loop above will be a no-op, since the copy's journal is empty. // Thus, here we iterate over stateObjects, to enable copies of copies for addr := range s.stateObjectsPending { if _, exist := state.stateObjects[addr]; !exist { state.stateObjects[addr] = s.stateObjects[addr].deepCopy(state) } state.stateObjectsPending[addr] = struct{}{} } for addr := range s.stateObjectsDirty { if _, exist := state.stateObjects[addr]; !exist { state.stateObjects[addr] = s.stateObjects[addr].deepCopy(state) } state.stateObjectsDirty[addr] = struct{}{} } for hash, logs := range s.logs { cpy := make([]*types.Log, len(logs)) for i, l := range logs { cpy[i] = new(types.Log) *cpy[i] = *l } state.logs[hash] = cpy } for hash, preimage := range s.preimages { state.preimages[hash] = preimage } return state } // Snapshot returns an identifier for the current revision of the state. func (s *StateDB) Snapshot() int { id := s.nextRevisionId s.nextRevisionId++ s.validRevisions = append(s.validRevisions, revision{id, s.journal.length()}) return id } // RevertToSnapshot reverts all state changes made since the given revision. func (s *StateDB) RevertToSnapshot(revid int) { // Find the snapshot in the stack of valid snapshots. idx := sort.Search(len(s.validRevisions), func(i int) bool { return s.validRevisions[i].id >= revid }) if idx == len(s.validRevisions) || s.validRevisions[idx].id != revid { panic(fmt.Errorf("revision id %v cannot be reverted", revid)) } snapshot := s.validRevisions[idx].journalIndex // Replay the journal to undo changes and remove invalidated snapshots s.journal.revert(s, snapshot) s.validRevisions = s.validRevisions[:idx] } // GetRefund returns the current value of the refund counter. func (s *StateDB) GetRefund() uint64 { return s.refund } // Finalise finalises the state by removing the s destructed objects and clears // the journal as well as the refunds. Finalise, however, will not push any updates // into the tries just yet. Only IntermediateRoot or Commit will do that. func (s *StateDB) Finalise(deleteEmptyObjects bool) { for addr := range s.journal.dirties { obj, exist := s.stateObjects[addr] if !exist { // ripeMD is 'touched' at block 1714175, in tx 0x1237f737031e40bcde4a8b7e717b2d15e3ecadfe49bb1bbc71ee9deb09c6fcf2 // That tx goes out of gas, and although the notion of 'touched' does not exist there, the // touch-event will still be recorded in the journal. Since ripeMD is a special snowflake, // it will persist in the journal even though the journal is reverted. In this special circumstance, // it may exist in `s.journal.dirties` but not in `s.stateObjects`. // Thus, we can safely ignore it here continue } if obj.suicided || (deleteEmptyObjects && obj.empty()) { obj.deleted = true // If state snapshotting is active, also mark the destruction there. // Note, we can't do this only at the end of a block because multiple // transactions within the same block might self destruct and then // ressurrect an account; but the snapshotter needs both events. if s.snap != nil { s.snapDestructs[obj.addrHash] = struct{}{} // We need to maintain account deletions explicitly (will remain set indefinitely) delete(s.snapAccounts, obj.addrHash) // Clear out any previously updated account data (may be recreated via a ressurrect) delete(s.snapStorage, obj.addrHash) // Clear out any previously updated storage data (may be recreated via a ressurrect) } } else { obj.finalise() } s.stateObjectsPending[addr] = struct{}{} s.stateObjectsDirty[addr] = struct{}{} } // Invalidate journal because reverting across transactions is not allowed. s.clearJournalAndRefund() } // IntermediateRoot computes the current root hash of the state trie. // It is called in between transactions to get the root hash that // goes into transaction receipts. func (s *StateDB) IntermediateRoot(deleteEmptyObjects bool) common.Hash { // Finalise all the dirty storage states and write them into the tries s.Finalise(deleteEmptyObjects) for addr := range s.stateObjectsPending { obj := s.stateObjects[addr] if obj.deleted { s.deleteStateObject(obj) } else { obj.updateRoot(s.db) s.updateStateObject(obj) } } if len(s.stateObjectsPending) > 0 { s.stateObjectsPending = make(map[common.Address]struct{}) } // Track the amount of time wasted on hashing the account trie if metrics.EnabledExpensive { defer func(start time.Time) { s.AccountHashes += time.Since(start) }(time.Now()) } return s.trie.Hash() } // Prepare sets the current transaction hash and index and block hash which is // used when the EVM emits new state logs. func (s *StateDB) Prepare(thash, bhash common.Hash, ti int) { s.thash = thash s.bhash = bhash s.txIndex = ti } func (s *StateDB) clearJournalAndRefund() { if len(s.journal.entries) > 0 { s.journal = newJournal() s.refund = 0 } s.validRevisions = s.validRevisions[:0] // Snapshots can be created without journal entires } // Commit writes the state to the underlying in-memory trie database. func (s *StateDB) Commit(deleteEmptyObjects bool) (common.Hash, error) { if s.dbErr != nil { return common.Hash{}, fmt.Errorf("commit aborted due to earlier error: %v", s.dbErr) } // Finalize any pending changes and merge everything into the tries s.IntermediateRoot(deleteEmptyObjects) // Commit objects to the trie, measuring the elapsed time codeWriter := s.db.TrieDB().DiskDB().NewBatch() for addr := range s.stateObjectsDirty { if obj := s.stateObjects[addr]; !obj.deleted { // Write any contract code associated with the state object if obj.code != nil && obj.dirtyCode { rawdb.WriteCode(codeWriter, common.BytesToHash(obj.CodeHash()), obj.code) obj.dirtyCode = false } // Write any storage changes in the state object to its storage trie if err := obj.CommitTrie(s.db); err != nil { return common.Hash{}, err } } } if len(s.stateObjectsDirty) > 0 { s.stateObjectsDirty = make(map[common.Address]struct{}) } if codeWriter.ValueSize() > 0 { if err := codeWriter.Write(); err != nil { log.Crit("Failed to commit dirty codes", "error", err) } } // Write the account trie changes, measuing the amount of wasted time var start time.Time if metrics.EnabledExpensive { start = time.Now() } // The onleaf func is called _serially_, so we can reuse the same account // for unmarshalling every time. var account Account root, err := s.trie.Commit(func(path []byte, leaf []byte, parent common.Hash) error { if err := rlp.DecodeBytes(leaf, &account); err != nil { return nil } if account.Root != emptyRoot { s.db.TrieDB().Reference(account.Root, parent) } return nil }) if metrics.EnabledExpensive { s.AccountCommits += time.Since(start) } // If snapshotting is enabled, update the snapshot tree with this new version if s.snap != nil { if metrics.EnabledExpensive { defer func(start time.Time) { s.SnapshotCommits += time.Since(start) }(time.Now()) } // Only update if there's a state transition (skip empty Clique blocks) if parent := s.snap.Root(); parent != root { if err := s.snaps.Update(root, parent, s.snapDestructs, s.snapAccounts, s.snapStorage); err != nil { log.Warn("Failed to update snapshot tree", "from", parent, "to", root, "err", err) } if err := s.snaps.Cap(root, 127); err != nil { // Persistent layer is 128th, the last available trie log.Warn("Failed to cap snapshot tree", "root", root, "layers", 127, "err", err) } } s.snap, s.snapDestructs, s.snapAccounts, s.snapStorage = nil, nil, nil, nil } return root, err }