// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package snapshot import ( "bytes" "math/rand" "testing" "github.com/VictoriaMetrics/fastcache" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb/memorydb" ) func copyDestructs(destructs map[common.Hash]struct{}) map[common.Hash]struct{} { copy := make(map[common.Hash]struct{}) for hash := range destructs { copy[hash] = struct{}{} } return copy } func copyAccounts(accounts map[common.Hash][]byte) map[common.Hash][]byte { copy := make(map[common.Hash][]byte) for hash, blob := range accounts { copy[hash] = blob } return copy } func copyStorage(storage map[common.Hash]map[common.Hash][]byte) map[common.Hash]map[common.Hash][]byte { copy := make(map[common.Hash]map[common.Hash][]byte) for accHash, slots := range storage { copy[accHash] = make(map[common.Hash][]byte) for slotHash, blob := range slots { copy[accHash][slotHash] = blob } } return copy } // TestMergeBasics tests some simple merges func TestMergeBasics(t *testing.T) { var ( destructs = make(map[common.Hash]struct{}) accounts = make(map[common.Hash][]byte) storage = make(map[common.Hash]map[common.Hash][]byte) ) // Fill up a parent for i := 0; i < 100; i++ { h := randomHash() data := randomAccount() accounts[h] = data if rand.Intn(4) == 0 { destructs[h] = struct{}{} } if rand.Intn(2) == 0 { accStorage := make(map[common.Hash][]byte) value := make([]byte, 32) rand.Read(value) accStorage[randomHash()] = value storage[h] = accStorage } } // Add some (identical) layers on top parent := newDiffLayer(emptyLayer(), common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage)) child := newDiffLayer(parent, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage)) child = newDiffLayer(child, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage)) child = newDiffLayer(child, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage)) child = newDiffLayer(child, common.Hash{}, copyDestructs(destructs), copyAccounts(accounts), copyStorage(storage)) // And flatten merged := (child.flatten()).(*diffLayer) { // Check account lists if have, want := len(merged.accountList), 0; have != want { t.Errorf("accountList wrong: have %v, want %v", have, want) } if have, want := len(merged.AccountList()), len(accounts); have != want { t.Errorf("AccountList() wrong: have %v, want %v", have, want) } if have, want := len(merged.accountList), len(accounts); have != want { t.Errorf("accountList [2] wrong: have %v, want %v", have, want) } } { // Check account drops if have, want := len(merged.destructSet), len(destructs); have != want { t.Errorf("accountDrop wrong: have %v, want %v", have, want) } } { // Check storage lists i := 0 for aHash, sMap := range storage { if have, want := len(merged.storageList), i; have != want { t.Errorf("[1] storageList wrong: have %v, want %v", have, want) } list, _ := merged.StorageList(aHash) if have, want := len(list), len(sMap); have != want { t.Errorf("[2] StorageList() wrong: have %v, want %v", have, want) } if have, want := len(merged.storageList[aHash]), len(sMap); have != want { t.Errorf("storageList wrong: have %v, want %v", have, want) } i++ } } } // TestMergeDelete tests some deletion func TestMergeDelete(t *testing.T) { var ( storage = make(map[common.Hash]map[common.Hash][]byte) ) // Fill up a parent h1 := common.HexToHash("0x01") h2 := common.HexToHash("0x02") flipDrops := func() map[common.Hash]struct{} { return map[common.Hash]struct{}{ h2: {}, } } flipAccs := func() map[common.Hash][]byte { return map[common.Hash][]byte{ h1: randomAccount(), } } flopDrops := func() map[common.Hash]struct{} { return map[common.Hash]struct{}{ h1: {}, } } flopAccs := func() map[common.Hash][]byte { return map[common.Hash][]byte{ h2: randomAccount(), } } // Add some flipAccs-flopping layers on top parent := newDiffLayer(emptyLayer(), common.Hash{}, flipDrops(), flipAccs(), storage) child := parent.Update(common.Hash{}, flopDrops(), flopAccs(), storage) child = child.Update(common.Hash{}, flipDrops(), flipAccs(), storage) child = child.Update(common.Hash{}, flopDrops(), flopAccs(), storage) child = child.Update(common.Hash{}, flipDrops(), flipAccs(), storage) child = child.Update(common.Hash{}, flopDrops(), flopAccs(), storage) child = child.Update(common.Hash{}, flipDrops(), flipAccs(), storage) if data, _ := child.Account(h1); data == nil { t.Errorf("last diff layer: expected %x account to be non-nil", h1) } if data, _ := child.Account(h2); data != nil { t.Errorf("last diff layer: expected %x account to be nil", h2) } if _, ok := child.destructSet[h1]; ok { t.Errorf("last diff layer: expected %x drop to be missing", h1) } if _, ok := child.destructSet[h2]; !ok { t.Errorf("last diff layer: expected %x drop to be present", h1) } // And flatten merged := (child.flatten()).(*diffLayer) if data, _ := merged.Account(h1); data == nil { t.Errorf("merged layer: expected %x account to be non-nil", h1) } if data, _ := merged.Account(h2); data != nil { t.Errorf("merged layer: expected %x account to be nil", h2) } if _, ok := merged.destructSet[h1]; !ok { // Note, drops stay alive until persisted to disk! t.Errorf("merged diff layer: expected %x drop to be present", h1) } if _, ok := merged.destructSet[h2]; !ok { // Note, drops stay alive until persisted to disk! t.Errorf("merged diff layer: expected %x drop to be present", h1) } // If we add more granular metering of memory, we can enable this again, // but it's not implemented for now //if have, want := merged.memory, child.memory; have != want { // t.Errorf("mem wrong: have %d, want %d", have, want) //} } // This tests that if we create a new account, and set a slot, and then merge // it, the lists will be correct. func TestInsertAndMerge(t *testing.T) { // Fill up a parent var ( acc = common.HexToHash("0x01") slot = common.HexToHash("0x02") parent *diffLayer child *diffLayer ) { var ( destructs = make(map[common.Hash]struct{}) accounts = make(map[common.Hash][]byte) storage = make(map[common.Hash]map[common.Hash][]byte) ) parent = newDiffLayer(emptyLayer(), common.Hash{}, destructs, accounts, storage) } { var ( destructs = make(map[common.Hash]struct{}) accounts = make(map[common.Hash][]byte) storage = make(map[common.Hash]map[common.Hash][]byte) ) accounts[acc] = randomAccount() storage[acc] = make(map[common.Hash][]byte) storage[acc][slot] = []byte{0x01} child = newDiffLayer(parent, common.Hash{}, destructs, accounts, storage) } // And flatten merged := (child.flatten()).(*diffLayer) { // Check that slot value is present have, _ := merged.Storage(acc, slot) if want := []byte{0x01}; !bytes.Equal(have, want) { t.Errorf("merged slot value wrong: have %x, want %x", have, want) } } } func emptyLayer() *diskLayer { return &diskLayer{ diskdb: memorydb.New(), cache: fastcache.New(500 * 1024), } } // BenchmarkSearch checks how long it takes to find a non-existing key // BenchmarkSearch-6 200000 10481 ns/op (1K per layer) // BenchmarkSearch-6 200000 10760 ns/op (10K per layer) // BenchmarkSearch-6 100000 17866 ns/op // // BenchmarkSearch-6 500000 3723 ns/op (10k per layer, only top-level RLock() func BenchmarkSearch(b *testing.B) { // First, we set up 128 diff layers, with 1K items each fill := func(parent snapshot) *diffLayer { var ( destructs = make(map[common.Hash]struct{}) accounts = make(map[common.Hash][]byte) storage = make(map[common.Hash]map[common.Hash][]byte) ) for i := 0; i < 10000; i++ { accounts[randomHash()] = randomAccount() } return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage) } var layer snapshot layer = emptyLayer() for i := 0; i < 128; i++ { layer = fill(layer) } key := crypto.Keccak256Hash([]byte{0x13, 0x38}) b.ResetTimer() for i := 0; i < b.N; i++ { layer.AccountRLP(key) } } // BenchmarkSearchSlot checks how long it takes to find a non-existing key // - Number of layers: 128 // - Each layers contains the account, with a couple of storage slots // BenchmarkSearchSlot-6 100000 14554 ns/op // BenchmarkSearchSlot-6 100000 22254 ns/op (when checking parent root using mutex) // BenchmarkSearchSlot-6 100000 14551 ns/op (when checking parent number using atomic) // With bloom filter: // BenchmarkSearchSlot-6 3467835 351 ns/op func BenchmarkSearchSlot(b *testing.B) { // First, we set up 128 diff layers, with 1K items each accountKey := crypto.Keccak256Hash([]byte{0x13, 0x37}) storageKey := crypto.Keccak256Hash([]byte{0x13, 0x37}) accountRLP := randomAccount() fill := func(parent snapshot) *diffLayer { var ( destructs = make(map[common.Hash]struct{}) accounts = make(map[common.Hash][]byte) storage = make(map[common.Hash]map[common.Hash][]byte) ) accounts[accountKey] = accountRLP accStorage := make(map[common.Hash][]byte) for i := 0; i < 5; i++ { value := make([]byte, 32) rand.Read(value) accStorage[randomHash()] = value storage[accountKey] = accStorage } return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage) } var layer snapshot layer = emptyLayer() for i := 0; i < 128; i++ { layer = fill(layer) } b.ResetTimer() for i := 0; i < b.N; i++ { layer.Storage(accountKey, storageKey) } } // With accountList and sorting // BenchmarkFlatten-6 50 29890856 ns/op // // Without sorting and tracking accountlist // BenchmarkFlatten-6 300 5511511 ns/op func BenchmarkFlatten(b *testing.B) { fill := func(parent snapshot) *diffLayer { var ( destructs = make(map[common.Hash]struct{}) accounts = make(map[common.Hash][]byte) storage = make(map[common.Hash]map[common.Hash][]byte) ) for i := 0; i < 100; i++ { accountKey := randomHash() accounts[accountKey] = randomAccount() accStorage := make(map[common.Hash][]byte) for i := 0; i < 20; i++ { value := make([]byte, 32) rand.Read(value) accStorage[randomHash()] = value } storage[accountKey] = accStorage } return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage) } b.ResetTimer() for i := 0; i < b.N; i++ { b.StopTimer() var layer snapshot layer = emptyLayer() for i := 1; i < 128; i++ { layer = fill(layer) } b.StartTimer() for i := 1; i < 128; i++ { dl, ok := layer.(*diffLayer) if !ok { break } layer = dl.flatten() } b.StopTimer() } } // This test writes ~324M of diff layers to disk, spread over // - 128 individual layers, // - each with 200 accounts // - containing 200 slots // // BenchmarkJournal-6 1 1471373923 ns/ops // BenchmarkJournal-6 1 1208083335 ns/op // bufio writer func BenchmarkJournal(b *testing.B) { fill := func(parent snapshot) *diffLayer { var ( destructs = make(map[common.Hash]struct{}) accounts = make(map[common.Hash][]byte) storage = make(map[common.Hash]map[common.Hash][]byte) ) for i := 0; i < 200; i++ { accountKey := randomHash() accounts[accountKey] = randomAccount() accStorage := make(map[common.Hash][]byte) for i := 0; i < 200; i++ { value := make([]byte, 32) rand.Read(value) accStorage[randomHash()] = value } storage[accountKey] = accStorage } return newDiffLayer(parent, common.Hash{}, destructs, accounts, storage) } layer := snapshot(new(diskLayer)) for i := 1; i < 128; i++ { layer = fill(layer) } b.ResetTimer() for i := 0; i < b.N; i++ { layer.Journal(new(bytes.Buffer)) } }