// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. package core import ( "fmt" "github.com/ava-labs/coreth/consensus" "github.com/ava-labs/coreth/core/state" "github.com/ava-labs/coreth/core/types" "github.com/ava-labs/coreth/params" "github.com/ethereum/go-ethereum/trie" ) // BlockValidator is responsible for validating block headers, uncles and // processed state. // // BlockValidator implements Validator. type BlockValidator struct { config *params.ChainConfig // Chain configuration options bc *BlockChain // Canonical block chain engine consensus.Engine // Consensus engine used for validating } // NewBlockValidator returns a new block validator which is safe for re-use func NewBlockValidator(config *params.ChainConfig, blockchain *BlockChain, engine consensus.Engine) *BlockValidator { validator := &BlockValidator{ config: config, engine: engine, bc: blockchain, } return validator } // ValidateBody validates the given block's uncles and verifies the block // header's transaction and uncle roots. The headers are assumed to be already // validated at this point. func (v *BlockValidator) ValidateBody(block *types.Block) error { // Check whether the block's known, and if not, that it's linkable if v.bc.HasBlockAndState(block.Hash(), block.NumberU64()) { return ErrKnownBlock } // Header validity is known at this point, check the uncles and transactions header := block.Header() if err := v.engine.VerifyUncles(v.bc, block); err != nil { return err } if hash := types.CalcUncleHash(block.Uncles()); hash != header.UncleHash { return fmt.Errorf("uncle root hash mismatch: have %x, want %x", hash, header.UncleHash) } if hash := types.DeriveSha(block.Transactions(), new(trie.Trie)); hash != header.TxHash { return fmt.Errorf("transaction root hash mismatch: have %x, want %x", hash, header.TxHash) } if !v.bc.HasBlockAndState(block.ParentHash(), block.NumberU64()-1) { if !v.bc.HasBlock(block.ParentHash(), block.NumberU64()-1) { return consensus.ErrUnknownAncestor } return consensus.ErrPrunedAncestor } return nil } // ValidateState validates the various changes that happen after a state // transition, such as amount of used gas, the receipt roots and the state root // itself. ValidateState returns a database batch if the validation was a success // otherwise nil and an error is returned. func (v *BlockValidator) ValidateState(block *types.Block, statedb *state.StateDB, receipts types.Receipts, usedGas uint64) error { header := block.Header() if block.GasUsed() != usedGas { return fmt.Errorf("invalid gas used (remote: %d local: %d)", block.GasUsed(), usedGas) } // Validate the received block's bloom with the one derived from the generated receipts. // For valid blocks this should always validate to true. rbloom := types.CreateBloom(receipts) if rbloom != header.Bloom { return fmt.Errorf("invalid bloom (remote: %x local: %x)", header.Bloom, rbloom) } // Tre receipt Trie's root (R = (Tr [[H1, R1], ... [Hn, R1]])) receiptSha := types.DeriveSha(receipts, new(trie.Trie)) if receiptSha != header.ReceiptHash { return fmt.Errorf("invalid receipt root hash (remote: %x local: %x)", header.ReceiptHash, receiptSha) } // Validate the state root against the received state root and throw // an error if they don't match. if root := statedb.IntermediateRoot(v.config.IsEIP158(header.Number)); header.Root != root { return fmt.Errorf("invalid merkle root (remote: %x local: %x)", header.Root, root) } return nil } // CalcGasLimit computes the gas limit of the next block after parent. It aims // to keep the baseline gas above the provided floor, and increase it towards the // ceil if the blocks are full. If the ceil is exceeded, it will always decrease // the gas allowance. func CalcGasLimit(parent *types.Block, gasFloor, gasCeil uint64) uint64 { // contrib = (parentGasUsed * 3 / 2) / 1024 contrib := (parent.GasUsed() + parent.GasUsed()/2) / params.GasLimitBoundDivisor // decay = parentGasLimit / 1024 -1 decay := parent.GasLimit()/params.GasLimitBoundDivisor - 1 /* strategy: gasLimit of block-to-mine is set based on parent's gasUsed value. if parentGasUsed > parentGasLimit * (2/3) then we increase it, otherwise lower it (or leave it unchanged if it's right at that usage) the amount increased/decreased depends on how far away from parentGasLimit * (2/3) parentGasUsed is. */ limit := parent.GasLimit() - decay + contrib if limit < params.MinGasLimit { limit = params.MinGasLimit } // If we're outside our allowed gas range, we try to hone towards them if limit < gasFloor { limit = parent.GasLimit() + decay if limit > gasFloor { limit = gasFloor } } else if limit > gasCeil { limit = parent.GasLimit() - decay if limit < gasCeil { limit = gasCeil } } return limit }