// Copyright 2017 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package usbwallet implements support for USB hardware wallets. package usbwallet import ( "context" "fmt" "io" "math/big" "sync" "time" "github.com/ava-labs/coreth/accounts" "github.com/ava-labs/coreth/core/types" ethereum "github.com/ava-labs/go-ethereum" "github.com/ava-labs/go-ethereum/common" "github.com/ava-labs/go-ethereum/crypto" "github.com/ava-labs/go-ethereum/log" "github.com/karalabe/usb" ) // Maximum time between wallet health checks to detect USB unplugs. const heartbeatCycle = time.Second // Minimum time to wait between self derivation attempts, even it the user is // requesting accounts like crazy. const selfDeriveThrottling = time.Second // driver defines the vendor specific functionality hardware wallets instances // must implement to allow using them with the wallet lifecycle management. type driver interface { // Status returns a textual status to aid the user in the current state of the // wallet. It also returns an error indicating any failure the wallet might have // encountered. Status() (string, error) // Open initializes access to a wallet instance. The passphrase parameter may // or may not be used by the implementation of a particular wallet instance. Open(device io.ReadWriter, passphrase string) error // Close releases any resources held by an open wallet instance. Close() error // Heartbeat performs a sanity check against the hardware wallet to see if it // is still online and healthy. Heartbeat() error // Derive sends a derivation request to the USB device and returns the Ethereum // address located on that path. Derive(path accounts.DerivationPath) (common.Address, error) // SignTx sends the transaction to the USB device and waits for the user to confirm // or deny the transaction. SignTx(path accounts.DerivationPath, tx *types.Transaction, chainID *big.Int) (common.Address, *types.Transaction, error) } // wallet represents the common functionality shared by all USB hardware // wallets to prevent reimplementing the same complex maintenance mechanisms // for different vendors. type wallet struct { hub *Hub // USB hub scanning driver driver // Hardware implementation of the low level device operations url *accounts.URL // Textual URL uniquely identifying this wallet info usb.DeviceInfo // Known USB device infos about the wallet device usb.Device // USB device advertising itself as a hardware wallet accounts []accounts.Account // List of derive accounts pinned on the hardware wallet paths map[common.Address]accounts.DerivationPath // Known derivation paths for signing operations deriveNextPaths []accounts.DerivationPath // Next derivation paths for account auto-discovery (multiple bases supported) deriveNextAddrs []common.Address // Next derived account addresses for auto-discovery (multiple bases supported) deriveChain ethereum.ChainStateReader // Blockchain state reader to discover used account with deriveReq chan chan struct{} // Channel to request a self-derivation on deriveQuit chan chan error // Channel to terminate the self-deriver with healthQuit chan chan error // Locking a hardware wallet is a bit special. Since hardware devices are lower // performing, any communication with them might take a non negligible amount of // time. Worse still, waiting for user confirmation can take arbitrarily long, // but exclusive communication must be upheld during. Locking the entire wallet // in the mean time however would stall any parts of the system that don't want // to communicate, just read some state (e.g. list the accounts). // // As such, a hardware wallet needs two locks to function correctly. A state // lock can be used to protect the wallet's software-side internal state, which // must not be held exclusively during hardware communication. A communication // lock can be used to achieve exclusive access to the device itself, this one // however should allow "skipping" waiting for operations that might want to // use the device, but can live without too (e.g. account self-derivation). // // Since we have two locks, it's important to know how to properly use them: // - Communication requires the `device` to not change, so obtaining the // commsLock should be done after having a stateLock. // - Communication must not disable read access to the wallet state, so it // must only ever hold a *read* lock to stateLock. commsLock chan struct{} // Mutex (buf=1) for the USB comms without keeping the state locked stateLock sync.RWMutex // Protects read and write access to the wallet struct fields log log.Logger // Contextual logger to tag the base with its id } // URL implements accounts.Wallet, returning the URL of the USB hardware device. func (w *wallet) URL() accounts.URL { return *w.url // Immutable, no need for a lock } // Status implements accounts.Wallet, returning a custom status message from the // underlying vendor-specific hardware wallet implementation. func (w *wallet) Status() (string, error) { w.stateLock.RLock() // No device communication, state lock is enough defer w.stateLock.RUnlock() status, failure := w.driver.Status() if w.device == nil { return "Closed", failure } return status, failure } // Open implements accounts.Wallet, attempting to open a USB connection to the // hardware wallet. func (w *wallet) Open(passphrase string) error { w.stateLock.Lock() // State lock is enough since there's no connection yet at this point defer w.stateLock.Unlock() // If the device was already opened once, refuse to try again if w.paths != nil { return accounts.ErrWalletAlreadyOpen } // Make sure the actual device connection is done only once if w.device == nil { device, err := w.info.Open() if err != nil { return err } w.device = device w.commsLock = make(chan struct{}, 1) w.commsLock <- struct{}{} // Enable lock } // Delegate device initialization to the underlying driver if err := w.driver.Open(w.device, passphrase); err != nil { return err } // Connection successful, start life-cycle management w.paths = make(map[common.Address]accounts.DerivationPath) w.deriveReq = make(chan chan struct{}) w.deriveQuit = make(chan chan error) w.healthQuit = make(chan chan error) go w.heartbeat() go w.selfDerive() // Notify anyone listening for wallet events that a new device is accessible go w.hub.updateFeed.Send(accounts.WalletEvent{Wallet: w, Kind: accounts.WalletOpened}) return nil } // heartbeat is a health check loop for the USB wallets to periodically verify // whether they are still present or if they malfunctioned. func (w *wallet) heartbeat() { w.log.Debug("USB wallet health-check started") defer w.log.Debug("USB wallet health-check stopped") // Execute heartbeat checks until termination or error var ( errc chan error err error ) for errc == nil && err == nil { // Wait until termination is requested or the heartbeat cycle arrives select { case errc = <-w.healthQuit: // Termination requested continue case <-time.After(heartbeatCycle): // Heartbeat time } // Execute a tiny data exchange to see responsiveness w.stateLock.RLock() if w.device == nil { // Terminated while waiting for the lock w.stateLock.RUnlock() continue } <-w.commsLock // Don't lock state while resolving version err = w.driver.Heartbeat() w.commsLock <- struct{}{} w.stateLock.RUnlock() if err != nil { w.stateLock.Lock() // Lock state to tear the wallet down w.close() w.stateLock.Unlock() } // Ignore non hardware related errors err = nil } // In case of error, wait for termination if err != nil { w.log.Debug("USB wallet health-check failed", "err", err) errc = <-w.healthQuit } errc <- err } // Close implements accounts.Wallet, closing the USB connection to the device. func (w *wallet) Close() error { // Ensure the wallet was opened w.stateLock.RLock() hQuit, dQuit := w.healthQuit, w.deriveQuit w.stateLock.RUnlock() // Terminate the health checks var herr error if hQuit != nil { errc := make(chan error) hQuit <- errc herr = <-errc // Save for later, we *must* close the USB } // Terminate the self-derivations var derr error if dQuit != nil { errc := make(chan error) dQuit <- errc derr = <-errc // Save for later, we *must* close the USB } // Terminate the device connection w.stateLock.Lock() defer w.stateLock.Unlock() w.healthQuit = nil w.deriveQuit = nil w.deriveReq = nil if err := w.close(); err != nil { return err } if herr != nil { return herr } return derr } // close is the internal wallet closer that terminates the USB connection and // resets all the fields to their defaults. // // Note, close assumes the state lock is held! func (w *wallet) close() error { // Allow duplicate closes, especially for health-check failures if w.device == nil { return nil } // Close the device, clear everything, then return w.device.Close() w.device = nil w.accounts, w.paths = nil, nil return w.driver.Close() } // Accounts implements accounts.Wallet, returning the list of accounts pinned to // the USB hardware wallet. If self-derivation was enabled, the account list is // periodically expanded based on current chain state. func (w *wallet) Accounts() []accounts.Account { // Attempt self-derivation if it's running reqc := make(chan struct{}, 1) select { case w.deriveReq <- reqc: // Self-derivation request accepted, wait for it <-reqc default: // Self-derivation offline, throttled or busy, skip } // Return whatever account list we ended up with w.stateLock.RLock() defer w.stateLock.RUnlock() cpy := make([]accounts.Account, len(w.accounts)) copy(cpy, w.accounts) return cpy } // selfDerive is an account derivation loop that upon request attempts to find // new non-zero accounts. func (w *wallet) selfDerive() { w.log.Debug("USB wallet self-derivation started") defer w.log.Debug("USB wallet self-derivation stopped") // Execute self-derivations until termination or error var ( reqc chan struct{} errc chan error err error ) for errc == nil && err == nil { // Wait until either derivation or termination is requested select { case errc = <-w.deriveQuit: // Termination requested continue case reqc = <-w.deriveReq: // Account discovery requested } // Derivation needs a chain and device access, skip if either unavailable w.stateLock.RLock() if w.device == nil || w.deriveChain == nil { w.stateLock.RUnlock() reqc <- struct{}{} continue } select { case <-w.commsLock: default: w.stateLock.RUnlock() reqc <- struct{}{} continue } // Device lock obtained, derive the next batch of accounts var ( accs []accounts.Account paths []accounts.DerivationPath nextPaths = append([]accounts.DerivationPath{}, w.deriveNextPaths...) nextAddrs = append([]common.Address{}, w.deriveNextAddrs...) context = context.Background() ) for i := 0; i < len(nextAddrs); i++ { for empty := false; !empty; { // Retrieve the next derived Ethereum account if nextAddrs[i] == (common.Address{}) { if nextAddrs[i], err = w.driver.Derive(nextPaths[i]); err != nil { w.log.Warn("USB wallet account derivation failed", "err", err) break } } // Check the account's status against the current chain state var ( balance *big.Int nonce uint64 ) balance, err = w.deriveChain.BalanceAt(context, nextAddrs[i], nil) if err != nil { w.log.Warn("USB wallet balance retrieval failed", "err", err) break } nonce, err = w.deriveChain.NonceAt(context, nextAddrs[i], nil) if err != nil { w.log.Warn("USB wallet nonce retrieval failed", "err", err) break } // If the next account is empty, stop self-derivation, but add for the last base path if balance.Sign() == 0 && nonce == 0 { empty = true if i < len(nextAddrs)-1 { break } } // We've just self-derived a new account, start tracking it locally path := make(accounts.DerivationPath, len(nextPaths[i])) copy(path[:], nextPaths[i][:]) paths = append(paths, path) account := accounts.Account{ Address: nextAddrs[i], URL: accounts.URL{Scheme: w.url.Scheme, Path: fmt.Sprintf("%s/%s", w.url.Path, path)}, } accs = append(accs, account) // Display a log message to the user for new (or previously empty accounts) if _, known := w.paths[nextAddrs[i]]; !known || (!empty && nextAddrs[i] == w.deriveNextAddrs[i]) { w.log.Info("USB wallet discovered new account", "address", nextAddrs[i], "path", path, "balance", balance, "nonce", nonce) } // Fetch the next potential account if !empty { nextAddrs[i] = common.Address{} nextPaths[i][len(nextPaths[i])-1]++ } } } // Self derivation complete, release device lock w.commsLock <- struct{}{} w.stateLock.RUnlock() // Insert any accounts successfully derived w.stateLock.Lock() for i := 0; i < len(accs); i++ { if _, ok := w.paths[accs[i].Address]; !ok { w.accounts = append(w.accounts, accs[i]) w.paths[accs[i].Address] = paths[i] } } // Shift the self-derivation forward // TODO(karalabe): don't overwrite changes from wallet.SelfDerive w.deriveNextAddrs = nextAddrs w.deriveNextPaths = nextPaths w.stateLock.Unlock() // Notify the user of termination and loop after a bit of time (to avoid trashing) reqc <- struct{}{} if err == nil { select { case errc = <-w.deriveQuit: // Termination requested, abort case <-time.After(selfDeriveThrottling): // Waited enough, willing to self-derive again } } } // In case of error, wait for termination if err != nil { w.log.Debug("USB wallet self-derivation failed", "err", err) errc = <-w.deriveQuit } errc <- err } // Contains implements accounts.Wallet, returning whether a particular account is // or is not pinned into this wallet instance. Although we could attempt to resolve // unpinned accounts, that would be an non-negligible hardware operation. func (w *wallet) Contains(account accounts.Account) bool { w.stateLock.RLock() defer w.stateLock.RUnlock() _, exists := w.paths[account.Address] return exists } // Derive implements accounts.Wallet, deriving a new account at the specific // derivation path. If pin is set to true, the account will be added to the list // of tracked accounts. func (w *wallet) Derive(path accounts.DerivationPath, pin bool) (accounts.Account, error) { // Try to derive the actual account and update its URL if successful w.stateLock.RLock() // Avoid device disappearing during derivation if w.device == nil { w.stateLock.RUnlock() return accounts.Account{}, accounts.ErrWalletClosed } <-w.commsLock // Avoid concurrent hardware access address, err := w.driver.Derive(path) w.commsLock <- struct{}{} w.stateLock.RUnlock() // If an error occurred or no pinning was requested, return if err != nil { return accounts.Account{}, err } account := accounts.Account{ Address: address, URL: accounts.URL{Scheme: w.url.Scheme, Path: fmt.Sprintf("%s/%s", w.url.Path, path)}, } if !pin { return account, nil } // Pinning needs to modify the state w.stateLock.Lock() defer w.stateLock.Unlock() if _, ok := w.paths[address]; !ok { w.accounts = append(w.accounts, account) w.paths[address] = make(accounts.DerivationPath, len(path)) copy(w.paths[address], path) } return account, nil } // SelfDerive sets a base account derivation path from which the wallet attempts // to discover non zero accounts and automatically add them to list of tracked // accounts. // // Note, self derivaton will increment the last component of the specified path // opposed to decending into a child path to allow discovering accounts starting // from non zero components. // // Some hardware wallets switched derivation paths through their evolution, so // this method supports providing multiple bases to discover old user accounts // too. Only the last base will be used to derive the next empty account. // // You can disable automatic account discovery by calling SelfDerive with a nil // chain state reader. func (w *wallet) SelfDerive(bases []accounts.DerivationPath, chain ethereum.ChainStateReader) { w.stateLock.Lock() defer w.stateLock.Unlock() w.deriveNextPaths = make([]accounts.DerivationPath, len(bases)) for i, base := range bases { w.deriveNextPaths[i] = make(accounts.DerivationPath, len(base)) copy(w.deriveNextPaths[i][:], base[:]) } w.deriveNextAddrs = make([]common.Address, len(bases)) w.deriveChain = chain } // signHash implements accounts.Wallet, however signing arbitrary data is not // supported for hardware wallets, so this method will always return an error. func (w *wallet) signHash(account accounts.Account, hash []byte) ([]byte, error) { return nil, accounts.ErrNotSupported } // SignData signs keccak256(data). The mimetype parameter describes the type of data being signed func (w *wallet) SignData(account accounts.Account, mimeType string, data []byte) ([]byte, error) { return w.signHash(account, crypto.Keccak256(data)) } // SignDataWithPassphrase implements accounts.Wallet, attempting to sign the given // data with the given account using passphrase as extra authentication. // Since USB wallets don't rely on passphrases, these are silently ignored. func (w *wallet) SignDataWithPassphrase(account accounts.Account, passphrase, mimeType string, data []byte) ([]byte, error) { return w.SignData(account, mimeType, data) } func (w *wallet) SignText(account accounts.Account, text []byte) ([]byte, error) { return w.signHash(account, accounts.TextHash(text)) } // SignTx implements accounts.Wallet. It sends the transaction over to the Ledger // wallet to request a confirmation from the user. It returns either the signed // transaction or a failure if the user denied the transaction. // // Note, if the version of the Ethereum application running on the Ledger wallet is // too old to sign EIP-155 transactions, but such is requested nonetheless, an error // will be returned opposed to silently signing in Homestead mode. func (w *wallet) SignTx(account accounts.Account, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) { w.stateLock.RLock() // Comms have own mutex, this is for the state fields defer w.stateLock.RUnlock() // If the wallet is closed, abort if w.device == nil { return nil, accounts.ErrWalletClosed } // Make sure the requested account is contained within path, ok := w.paths[account.Address] if !ok { return nil, accounts.ErrUnknownAccount } // All infos gathered and metadata checks out, request signing <-w.commsLock defer func() { w.commsLock <- struct{}{} }() // Ensure the device isn't screwed with while user confirmation is pending // TODO(karalabe): remove if hotplug lands on Windows w.hub.commsLock.Lock() w.hub.commsPend++ w.hub.commsLock.Unlock() defer func() { w.hub.commsLock.Lock() w.hub.commsPend-- w.hub.commsLock.Unlock() }() // Sign the transaction and verify the sender to avoid hardware fault surprises sender, signed, err := w.driver.SignTx(path, tx, chainID) if err != nil { return nil, err } if sender != account.Address { return nil, fmt.Errorf("signer mismatch: expected %s, got %s", account.Address.Hex(), sender.Hex()) } return signed, nil } // SignHashWithPassphrase implements accounts.Wallet, however signing arbitrary // data is not supported for Ledger wallets, so this method will always return // an error. func (w *wallet) SignTextWithPassphrase(account accounts.Account, passphrase string, text []byte) ([]byte, error) { return w.SignText(account, accounts.TextHash(text)) } // SignTxWithPassphrase implements accounts.Wallet, attempting to sign the given // transaction with the given account using passphrase as extra authentication. // Since USB wallets don't rely on passphrases, these are silently ignored. func (w *wallet) SignTxWithPassphrase(account accounts.Account, passphrase string, tx *types.Transaction, chainID *big.Int) (*types.Transaction, error) { return w.SignTx(account, tx, chainID) }