
CIBIC: C Implemented Bare and Ingenuous Compiler

尹茂帆 Ted Yin

F1224004 5120309051
Shanghai Jiao Tong University ACM Class

May 19, 2014

Abstract

This report presents the design and features of a simple C compiler which generates MIPS assem-
bly code. Although not all the language requirements and features are implemented according to the
standard, it still supports major C features, such as basic types (void, int, char), basic flow control
syntax (if, while-loop, for-loop), user-defined types (aka. typedef), functions, pointers (including
function pointers), struct/union (may be nested), etc. Besides, it makes use of SSA (Single Static
Assignment) form for the IR (Intermediate Representation) and optimization. The whole compiler
is written in pure C, obeying C89/C99 standard. The report first introduces the lexer and parser
generation, then focuses on the data structures being used in the AST (Abstract Syntax Tree) and
symbol tables, and makes a conclusion on the supported syntactical features. Next, the report shows
the intermediate representation design and claims the techniques that have been used in the project.
Finally, various optimization techniques are presented and discussed, some are accompanied with
code snippets.

Contents
1 Lexer and Parser 1

1.1 Friendly Error Report . 2

2 Semantic Analysis and Implementation 3
2.1 Type System . 5
2.2 typedef support . 5
2.3 Complex Declaration and Function Pointer . 7

3 Intermediate Representation 9
3.1 Single Static Assignment Form . 11
3.2 Phi-functions . 12
3.3 Register Allocation . 12

4 Performance and Optimization 13

1 Lexer and Parser
CIBIC makes good use of existing lexer and parser generators. It uses Flex to generate lexer while

using Bison as parser generator. Both generators read boilerplate text which contains C code fragments

1

to be filled in the generated lexer/parser. The best practice, I suggest, is to avoid embedding too
much concrete code in the boilerplate. Instead, we shall write well-designed functions in a separate file
(“ast.c” in CIBIC) and invoke functions in the boilerplate. The reason is that it is almost not practical
nor convenient to debug the generated lexer or parser. Using the seperation method, we can set up
breakpoints in the seperate file easily and debug on the fly. The declarations of all functions that may
be invoked during parsing can be found in “ast.h”.

It requires a little more effort to track the location of each token using Flex. Luckily, Flex provides
with a macro called “YY_USER_ACTION” to let the user do some extra actions after each token is read. So
I maintained a global variable “yycolumn” to keep the current column, a global char array “linebuff”
to buffer the text being read for error report.

int yycolumn = 1;
char linebuff[MAX_LINEBUFF], *lptr = linebuff;

#define YY_USER_ACTION \
do { \

yylloc.first_line = yylloc.last_line = yylineno; \
yylloc.first_column = yycolumn; \
yylloc.last_column = yycolumn + yyleng - 1; \
yycolumn += yyleng; \
memmove(lptr, yytext, yyleng); \
lptr += yyleng; \

} while (0);

#define NEW_LINE_USER_ACTION \
do { \

yycolumn = 1; \
lptr = linebuff; \

} while (0)

Listing 1: Code Snippet to Track Down Location

1.1 Friendly Error Report
CIBIC generates friendly and accurate error report. The corresponding line and column number are

printed. Besides, if it is an syntax error, CIBIC will print the context where the error occurs just like
clang.

2:28: error: syntax error, unexpected ';', expecting ',' or ')'
int this_is_an_example(;

^

2:13: error: syntax error, unexpected identifier
typedef a

^

Figure 1: Some Error Report Examples

2

2 Semantic Analysis and Implementation
The parsing process is also an AST (Abstrct Syntax Tree) construction process. By calling the

corresponding functions, the generated parser creates tree nodes and merge them into subtrees. The
major issue here is how to design a proper data structure to represent and maintain the AST. In CIBIC,
all nodes in an AST are instances of struct “CNode” in figure 2.

type
describe syntax information e.g. expression or declarator

rec:
union of intval / subtype / strval

stores detailed information e.g. which kind of expression it is
ext:

struct of type, var, autos, const_val, is_const, offset
extended info, where annotation is made

chd
the left most child of the node

next
the next sibling

loc
struct of row, col

the location in the source code, for error report

Figure 2: The Structure of a CNode instance

Since a node may have variable number of children, the most common and efficient approach is to
implement a left-child right-sibling binary tree. The field “chd” points to the child and “next” points to
the next sibling. This implementation is extremely flexible because we do not need to know the number
of children in advance, which brings us the convenience of appending argument nodes to a function
invocation node in the boilerplate.

After construction of the AST, the tree will be traversed by calling mutually recursive functions
declared in “semantics.h”. The entry call is “semantics_check” which will set up the symbol tables and
call “semantics_func” and “semantics_decl” to analyze function definitions and global declarations.
These functions will further invoke more basic functions such as “semantics_comp” (handles compound
statements) to fully check the semantics and gather variable typing information.

The key data structures in the semantic checking are symbol tables. Symbol tables maintain
variables and types in different scopes across different name spaces. When a variable is defined, the
corresponding type specifer will be checked and binds to the variable. Also, when the scope ends, all
variable bindings living within the scope will be removed from the table. Although they are removed
from the table, the bindings are still referenced by some nodes on the AST, so that the AST becomes
“annotated AST”. In CIBIC, the variable reference is stored in “ext.var” field of “CNode” and the
type information of an subexpression is annotated at “ext.type”. Thus, in a word, symbol tables stores
all symbols that are currently visible.

In C language, there are four name spaces: for label names, tags, members of structures or unions
and all other identifiers. Goto statments are not implemented in CIBIC, so there’re actually three name
spaces. Since each kind of structures or unios have its own name space for its fields, we treat them
specially and create a new table for each of them. For tags and all other identifiers, we set up two global
tables. Besides name spaces, scoping is also a very important concept in C. It seems to be an orthogonal
concept to name spaces.

3

Considering these two concepts, CIBIC implements a struct named “CScope” to maintain all the
information as shown in figure 3.

lvl
current nesting level of scopes, e.g. 0 for global scope

func
current function, helpful when analyzing a return statement

inside_loop
if the scope is inside a loop, help full when analyzing a break statement

top
points to the top of the scope stack

ids
name space for all other variables

tags
name space for all tags (name of structs or unions)

Figure 3: The Structure of a CScope instance

Note that “top” points to an instance of “CSNode” which has two fields “symlist” and “next”.
“symlist” points to a list of symbols in the same scope while “next” links to the outer scope which
is another instance of “CSNode”. As for “ids” and “tags”, they are pointers to “CTable”,stores all the
current symbols. As mentioned above, for each struct or union, there is also a pointer to “CTable” stores
all field names. “CTable” is an open addressing hash table containing nodes of the type “CTNode”. The
structure of each node is depicted in figure 4.

key
char *
val

void *, in order to also be used in checking duplicate parameters, etc.
next

the next element which has the same hash value
lvl

scope level

Figure 4: The Structure of a CTNode instance

Thanks to the level information kept in each “CTNode”, we do not have to establish a hash table for
every scopes, which may be memory consuming. Instead, whenever a new scope begins, CIBIC simply
pushes a new frame to scope stack. This is achieved by creating an instance of “CSNode”, setting its
“next” field to the “top” field of the “CScope” then letting the “top” points to the new frame, finally
increasing “lvl” by one. Whenever a new symbol is being added to “CScope”, CIBIC adds the symbol
to one of the tables “ids” and “tags”, then also appends the symbol to the “symlist” of the top of
the scope stack. The most elegant characteristics of open addressing hash tables is, for the same name
appears in different scopes, the symbol defined at the inner most is always ahead of others in the chain of
the table because it is the most recently added. So, for lookups, CIBIC just need to return the first node
having the same name in the chain, which is very time-efficient. At last, when a scope ends, CIBIC scans
the whole “symlist” of the top scope frame, and tries to remove these symbols from the table. Figure
5 presents the content of the scope stack when the analysis proceeds into the inner most declaration of
a. Chains with hash code 0097 and 0098 in figure 6 reveal the underlying mechanism.

4

Figure 7: A Typical Type Tree

int main() {
int a, b;
if (a > 0)
{

int a, b;
if (a > 0)
{

int a, b;
}

}
}

Figure 5: Nested Scope Example

[0072]->[int@747e780:0]
[0097]->[a@7484ae0:3]->[a@7484890:2]->[a@7484580:1]
[0098]->[b@7484bb0:3]->[b@7484960:2]->[b@7484710:1]
[0108]->[printf@747f150:0]
[0188]->[scanf@747f640:0]
[0263]->[__print_string@7484010:0]
[0278]->[__print_char@7483fc0:0]
[0623]->[__print_int@747f8b0:0]
[0778]->[malloc@7484100:0]
[0827]->[void@747eee0:0]
[0856]->[main@7484530:0]
[0908]->[memcpy@7484060:0]
[0971]->[char@747e9f0:0]

Figure 6: CIBIC Dump: Scope Stack

2.1 Type System
C has a small set of basic types. In CIBIC, basic types include char, int and void (literally, void is

not an actual type). However, C supports two powerful type aggregation: arrays and structures (unions),
and also supports an indirect access tool: pointer. This makes the type system much more complex and
usable in practice. CIBIC uses the concept “type tree” to organize types. All basic types are the leaves
of a type tree, while aggregate types and pointers are the intermediate nodes. Figure 7 shows a typical
type tree of a C struct.

A type tree is good at preserving type hierarchy info which may be extremely useful in type checking.
For example, when checking a expression *a, compiler first check if the root of the type tree of a is a
pointer. If not, error message will be printed and semantic checking fails. Otherwise, the type of the
expression result is the subtree of the only child of the root. Also, a type tree enables us to implement
complex type nesting, which will be discussed later on.

2.2 typedef support
CIBIC has support for user-defined types, which are defined via the keyword “typedef”. However,

“typedef” is notoriously difficult to deal with due to the ambiguity caused by the language design. For
example, in “int A”, A is a variable of integer type, but in “A a”, A is a user-defined type. The subtle
semantic difference is caused by context. In former case, A is identified as a identifier token, while in latter

5

case, identified as a type specifier. The meaning of a token should be made clear during lexical analysis
which does not take in account of context. So the most direct and effective way to implement typedef
is to hack the lexer and parser. CIBIC maintains a “typedef_stack” to denote current parsing status.
When a parser has just read a type specifier, before it moves on, it invokes “def_enter(FORCE_ID)” to
notify “typedef_stack” the subsequent string token must be an identifier instead of a type specifier. As
for “typedef” statements, the parser will invoke “def_enter(IN_TYPEDEF)” to record the newly defined
typename by adding an entry to a hash table. As for the lexer, when a string token is being read, it
invokes “is_identifier” to make sure whether the string is an IDENTIFIER or a USER_TYPE.

Listing 2 demonstrates a very subtle use of typedef, which can be parsed perfectly by CIBIC.

/* It's quite common to define a shorthand `I' for `struct I'. */
typedef struct I I;
/* Declaration of a function with parameter `a' of user-defined type `I'. */
int incomp(I a);
/* The definition of `I' is postponed. */
struct I {

int i, j;
};
/* Function definition of previous declared one. */
int incomp(I a) {}
/* Define `b' as an int type. */
typedef int b;
int main() {

/* Variable `b' is of type `b', an integer actually. */
I i;
b b;
incomp(i);

}

Listing 2: typedef Example

6

2.3 Complex Declaration and Function Pointer
With the help of type tree, CIBIC supports complex type declaration and function pointers. The

code below shows declaration with different semantics. The subsequent dump information shows the
corresponding type trees. The hexidecimal value after “@” is the memory address of corresponding
instance in the implementation. For example, local variable a is an instance of struct whose address
is 735da40, and next field of struct A also points to the type with the same address. In fact, the
address of a struct type instance is regarded as its unique id in CIBIC. This guarantees that the type
tree is correctly structured as shown in figure 7. It is also worth noting that three different delcarations
of “arrays” have inherently different meaning. Also the code shows us a very complex declaration of a
function func. It is a selector which returns one of the pointers to a function in its parameters.

struct A {
int x, y;
struct B {

int i, j;
} b;
struct A *next;

};

/* a function that returns a pointer to function */
int (*func(int flag, int (*f)(), int (*g)()))() {

if (flag) return f;
else return g;

}

int main() {
struct A a;
/* the follow types are distinctly different */
int a0[10][20]; /* two-dimensional array */
int (*a1)[20]; /* a pointer to array */
int *a2[20]; /* an array of pointers */
int **a3; /* pointer to pointer */
/* pointer to a function */
int (*f)(), (*h)();
/* function declaration, not a variable */
int (*g(int ***e[10]))();
/* complex type casting is also supported */
f = (int (*)())(0x12345678);
f = func(1, f, main); /* f */
h = func(0, f, main); /* main */
/* 0 1 */
printf("%d %d\n", f == main, h == main);

}

Listing 3: Complex Declaration Example

7

[func:{name:func}{size:-1}
{params:

[var@735fd60:flag :: [int]],
[var@735ff00:f :: [ptr]->

[func:{name:}{size:-1}
{params:}
{local:}]->[int]],

[var@7360080:g :: [ptr]->
[func:{name:}{size:-1}

{params:}
{local:}]->[int]]}

{local:}]->[ptr]->
[func:{name:}{size:-1}

{params:}
{local:}]->[int]

[func:{name:main}{size:-1}
{params:}
{local:

[var@7360d70:h :: [ptr]->
[func:{name:}{size:-1}

{params:}
{local:}]->[int]],

[var@7360c00:f :: [ptr]->
[func:{name:}{size:-1}

{params:}
{local:}]->[int]],

[var@7360a00:a3 :: [ptr]->[ptr]->[int]],
[var@7360820:a2 :: [arr:{len:20}{size:80}]->[ptr]->[int]],
[var@7360640:a1 :: [ptr]->[arr:{len:20}{size:-1}]->[int]],
[var@7360460:a0 :: [arr:{len:10}{size:800}]->[arr:{len:20}{size:80}]->[int]],
[var@7360110:a ::

[struct@735da40:{name:A}{size:20}{fields:
[var@735d9b0:b ::

[struct@735b730:{name:B}{size:8}{fields:
[var@735d7d0:i :: [int]],
[var@735d8b0:j :: [int]]}]],

[var@735b5c0:x :: [int]],
[var@735b6a0:y :: [int]],
[var@735db50:next :: [ptr]->

[struct@735da40:{name:A}]]}]]}]->[int]

Figure 8: CIBIC Dump: Complex Declaration

Accompanied by complex type declaration, complex type casting is also allowed in CIBIC. In the code
above, an integer 0x12345678 is casted into a pointer to a function with empty parameter list returning
an integer, and assign to function pointer f. Note that in order to deal with the form like “(int (*)())”,
syntax description in “cibic.y” is rewritten according to the standard and made more general.

Function pointers are easy to implement in MIPS assembly. But their declarations could be more

8

complex and esoteric than we expect it to be. Although these constructions are rarely used, the com-
pilers that support function pointer are supposted to understand them. For example, “int (*g(int
***e[10]))();” declares a function g which takes an array of pointers as parameters and returns a
function pointer. The code below demonstrates a non-typical use of function pointer. It can be compiled
correctly by CIBIC. When x is non-zero, the program prints “i’m f” five times, otherwise, prints “i’m
g”. Note that we make use of the language feature of C that the empty parameter list means uncertain
number of parameters, so that f and g can pass func itself to the invocation of func.

typedef void (*Func_t)();
void f(Func_t func, int step) {

if (!step) return;
printf("i'm f\n");
func(func, step - 1);

}
/* void (*func)() has the same meaning as Func_t func */
void g(void (*func)(), int step) {

if (!step) return;
printf("i'm g\n");
func(func, step - 1);

}
int main() {

void (*func)(void (*ifunc)(), int step);
int x = 1;
if (x) func = f;
else func = g;
func(func, 5);
return 0;

}

Listing 4: Self-reference function pointer

3 Intermediate Representation
A good IR (intermediate representation) should be both easy to modify (or optimize) and convenient

to be transformed into assembly. A typical bad design is to make up an IR that totally resembles assembly
instructions. This does not make much sense because when IR almost looks like assembly, we actually
do not need IR at all, even though this makes it easier to translate. Moreover, if IR to assembly is a
“one-to-one correspondence”, we can not benefit much from the IR in the optimization, even suffer from
debugging since one semantically clear operation may be splitted into several confusing assembly-like IR
instructions.

In CIBIC, there are mainly three kinds of IR instructions: flow control, assignment and calculation.
For example, BEQ, BNE, GOTO, RET, and CALL are flow control instructions; ARR, WARR, MOVE are assignment
instructions; MUL, DIV, ADD, SUB, etc. are calculation instructions. There are also a few special types of
instructions, like PUSH, LOAD. PUSH indicates an argument is pushed to the stack. LOAD is just a “pseudo-
instruction”, it is only designed for helping the unification of SSA form because every variable needs to
be defined somewhere. So local variables are parameters are first “loaded” at the beginning of a function.
Therefore for some variables LOAD does not need to be translated into a de facto load instruction (for
example, spilled variables). All kinds of instructions used in IR is shown in table.

9

OpCode Dest. Src. 1 Src. 2 Explanation
BEQ block cond val if (cond == val) goto block
BNE block cond val if (cond != val) goto block
GOTO block NULL NULL goto block
CALL ret func NULL ret = call func
RET NULL ret NULL return ret
PUSH NULL arg NULL push arg
LOAD var NULL NULL load var
ARR var arr index var = arr[index]
WARR arr var index arr[index] = var
MOVE var1 var2 NULL var1 = var2
ADDR var1 var2 NULL var1 = addr var2
MUL res var1 var2 res = var1 * var2
DIV res var1 var2 res = var1 / var2
MOD res var1 var2 res = var1 % var2
ADD res var1 var2 res = var1 + var2
SUB res var1 var2 res = var1 - var2
SHL res var1 var2 res = var1 << var2
SHR res var1 var2 res = var1 >> var2
AND res var1 var2 res = var1 & var2
XOR res var1 var2 res = var1 ˆ var2
OR res var1 var2 res = var1 | var2
NOR res var1 var2 res = var1 nor var2
EQ res var1 var2 res = var1 == var2
NE res var1 var2 res = var1 != var2
LT res var1 var2 res = var1 < var2
GT res var1 var2 res = var1 > var2
LE res var1 var2 res = var1 <= var2
GE res var1 var2 res = var1 >= var2
NEG res var1 NULL res = -var1

Here are some remarks:

1. Because C standard requires shortcuit of “&&” and “||” operator, they are transformed into
branches, will not be shown in the IR.

2. Multi-dimensional arrays require a little more care. In C, all arrays are treated as one-dimensional
array in the end. For instance, a[2][3][4] (a is declared as int a[5][5][5]) is transformed into
*(a + 2 * 100 + 3 * 20 + 4 * 4), so its IR, for example could be:

t5 = a_0 + 200
t3 = t5 + 60
b_1 = t3[16]

3. Pointer dereference such as a = *ptr can be easily represented by a = ptr[0].

4. Since structs and unions can not be entirely stored in a register, CIBIC regard a instance of a
struct or union as a pointer to it. Since the memory offset of an attribute can be determined after
semantics analysis, access to a struct (or union) can be represented in the same way as array:

10

struct A {
struct B {

int i, j;
} b;
int x, y;

} a, a2;
int main() {

struct B b;
a.b.i = 1;
a.b.j = 2;
a.x = 3;
a.y = 4;
a2.b = b;
a.b = a2.b;

}

t1 = a_0 + 8
t1[4] = 1
t4 = t1
t4[0] = 2
a_0[4] = 3
a_0[0] = 4
a2_0[8] = b_0
t12 = a2_0 + 8
a_0[8] = t12

The only problem left is the ambiguity. If we regard a instance of a struct as a pointer to it, how
could we distinguish a struct copy assignment from a struct pointer assignment? The answer is:
this is not an ambiguity at all, since all the type information of operands are preserved, we can
easily tell the difference by looking at type information. So actually, the printed IR above does not
contain all the information, it is just a human readable form to easy our debug. The underlying
type information is preserved in IR data structure and passed to the translator so can be used
to guide the final translation. Of course, the code above does produce correct result compiled by
CIBIC.

calc_dominance_frontier();
/* build SSA */
insert_phi(vars);
renaming_vars(oprs);
/* optimization on SSA */
const_propagation();
subexp_elimination();
const_propagation();
strength_reduction();
deadcode_elimination();
/* out of SSA */
mark_insts();
build_intervals();
register_alloc();

Listing 5: Workflow of IR in CIBIC

3.1 Single Static Assignment Form
CIBIC makes good use of SSA (Single Static Assignment) form. SSA form is a property of an IR,

which says that each variable is assigned exactly once. The property can simplify the liveness analysis
and optimization, since all variables are assigned only once so the “define-use” relationship is much
clearer that the original IR.

However, it is not trival to convert an IR to SSA form, mainly because of the “merging issue”. In
figure 9, the control flow branches at the if statement and merges again when getting out of if. The

11

Figure 9: Before and After Inserting Phi-function

question is, should we use x_1 or x_2 in the y = x + 1 statement? The answer is, it is only known at
runtime. So a “phi-function” x_3 = phi(x_1, x_2) will be inserted at the merge point to wrap two
possibilities. Unfortunately, not only does this circumstance appear in if statement, but also exist in
loops. How do we know where we should add an phi-function for certain variable? The answer is we can
just insert phi-functions at dominance frontiers in the control flow graph.

3.2 Phi-functions
There are several ways of computing dominance frontiers of a control flow graph. But they all first

construct the dominator tree and then deduce the frontiers. Well-known algorithms for finding out
the dominator tree are the straightforward iterative algorithm and Lengauer-Tarjan algorithm. The im-
proved version on latter algorithm provides with a nearly linear time complexity O(mα(m,n)). However,
according to the research [1] done by L. Georgiagids, R. F. Werneck, R. E. Tarjan et al, practical per-
formance of iterative algorithm is acceptable and even better than sophisticated LT algorithm. CIBIC
adopts a variant [2] of the original iterative algorithm. It is faster than LT algorithm on real programs
and easy to implement.

3.3 Register Allocation
CIBIC uses linear scan register allocation [3] to allocate registers before translating out of SSA form.

This method is different from traditional one and can make use of lifetime holes and instruction weights
to improve the quality of the allocation.

To run the allocation algorithm, we shall first compute live intervals. Unfortunately, the pseudo-code
provided in the paper [3] does not take the loop cases into account. In another paper [4], I found the
correct algorithm for coping with loops. Unfortunately, the pseudo-code in two papers are written in
different forms and have different concepts in some details. So I learned from both of them and got my
own algorithm (almost like the one in paper [3]).

In linear scan algorithm described in paper [3], we should maintain four sets: unhandled, handled,
active, inactive. However, for the implementation, we do not need to maintain handled set because once
a variable is handled, we can just evict it from the current active or inactive set and there is no need to
put it again into another handled set. Besides, the unhandled set can be implemented as a sorted array,
because intervals are picked in increasing order of their start points. Therefore, in CIBIC, only active
and inactive sets are maintained by double-linked lists with sentinel nodes. The double-linked design
makes it easy to remove an interval from the set and the sentinel node helps us to move to another set

12

conveniently. The algorithm also requires a pre-calculated weight of each interval (computed from the
accesses to the interval) which helps to decide the spilled variable.

4 Performance and Optimization

References
[1] Georgiadis, Loukas, Robert Endre Tarjan, and Renato Fonseca F. Werneck. “Finding Dominators in

Practice.” J. Graph Algorithms Appl. 10.1 (2006): 69-94.

[2] Cooper, Keith D., Timothy J. Harvey, and Ken Kennedy. “A simple, fast dominance algorithm.”
Software Practice & Experience 4 (2001): 1-10.

[3] Mössenböck, Hanspeter, and Michael Pfeiffer. “Linear scan register allocation in the context of SSA
form and register constraints.” Compiler Construction. Springer Berlin Heidelberg, 2002.

[4] Wimmer, Christian, and Michael Franz. “Linear scan register allocation on SSA form.” Proceedings
of the 8th annual IEEE/ACM international symposium on Code generation and optimization. ACM,
2010.

13

